Neutrinoless Double Beta Decay and Particle PhysicsNeutrinoless Double Beta Decay is mediated by...

69
Neutrinoless Double Beta Decay and Particle Physics Werner Rodejohann (MPIK, Heidelberg) 01/10/2012 1

Transcript of Neutrinoless Double Beta Decay and Particle PhysicsNeutrinoless Double Beta Decay is mediated by...

  • Neutrinoless Double Beta Decay and Particle Physics

    Werner Rodejohann

    (MPIK, Heidelberg)

    01/10/2012

    1

  • 2

  • Outline

    (A,Z) → (A,Z + 2) + 2 e− (0νββ) ⇒ Lepton Number Violation

    • Standard Interpretation:Neutrinoless Double Beta Decay is mediated by light and massive Majorana

    neutrinos (the ones which oscillate) and all other mechanisms potentially

    leading to 0νββ give negligible or no contribution

    • Non-Standard Interpretations:There is at least one other mechanism leading to Neutrinoless Double Beta

    Decay and its contribution is at least of the same order as the light neutrino

    exchange mechanism

    reviews on 0νββ:

    Int. J. Mod. Phys. E20, 1833 (2011); Focus issue J. Phys. G [1206.2560]

    3

  • Interpretation of Experiments

    Master formula:

    Γ0ν = Gx(Q,Z) |Mx(A,Z) ηx|2

    • Gx(Q,Z): phase space factor

    • Mx(A,Z): nuclear physics

    • ηx: particle physics

    4

  • Interpretation of Experiments

    Master formula:

    Γ0ν = Gx(Q,Z) |Mx(A,Z) ηx|2

    • Gx(Q,Z): phase space factor; calculable

    • Mx(A,Z): nuclear physics; problematic

    • ηx: particle physics; interesting

    5

  • Upcoming/running experiments: exciting time!!

    best limit was from 2001. . .

    Name Isotope source = detector; calorimetric with source 6= detector

    high energy res. low energy res. event topology event topology

    AMoRE 100Mo X – – –

    CANDLES 48Ca – X – –

    COBRA 116Cd (and 130Te) – – X –

    CUORE 130Te X – – –

    DCBA 82Se or 150Nd – – – X

    EXO 136Xe – – X –

    GERDA 76Ge X – – –

    KamLAND-Zen 136Xe – X – –

    LUCIFER 82Se or 100Mo or 116Cd X – – –

    MAJORANA 76Ge X – – –

    MOON 82Se or 100Mo or 150Nd – – – X

    NEXT 136Xe – – X –

    SNO+ 150Nd(?) – X – –

    SuperNEMO 82Se or 150Nd – – – X

    XMASS 136Xe – X – –

    multi-isotope determination good for 3 reasons

    6

  • 3 Reasons for Multi-isotope determination

    1.) credibility

    2.) test NME calculation

    T 0ν1/2(A1, Z1)

    T 0ν1/2(A2, Z2)=

    G(Q2, Z2) |M(A2, Z2)|2G(Q1, Z1) |M(A1, Z1)|2

    systematic errors drop out, ratio sensitive to NME model

    3.) test mechanism

    T 0ν1/2(A1, Z1)

    T 0ν1/2(A2, Z2)=

    Gx(Q2, Z2) |Mx(A2, Z2)|2Gx(Q1, Z1) |Mx(A1, Z1)|2

    particle physics drops out, ratio of NMEs sensitive to mechanism

    7

  • Experimental Aspects

    particle physics:

    (T 0ν1/2)−1 ∝ (particle physics)2

    experimentally:

    (T 0ν1/2)−1 ∝

    aM ε t without background

    a ε

    M t

    B∆Ebackground-dominated

    Note: factor 2 in particle physics is combined factor of 16 in M × t×B ×∆E

    8

  • Standard Interpretation

    Neutrinoless Double Beta Decay is mediated by light and massive Majorana

    neutrinos (the ones which oscillate) and all other mechanisms potentially leading

    to 0νββ give negligible or no contribution

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    9

  • ∆L 6= 0: Neutrinoless Double Beta DecayIm

    Rem

    mm

    ee

    ee

    ee

    (1)

    (3)

    (2)

    | |

    | || | e

    e.

    .

    eem

    2iβ2iα

    Amplitude proportional to coherent sum (“effective mass”):

    |mee| ≡∣∣∑

    U2eimi∣∣ =

    ∣∣|Ue1|2 m1 + |Ue2|2 m2 e2iα + |Ue3|2 m3 e2iβ

    ∣∣

    7 out of 9 parameters of mν !

    10

  • The usual plot

    11

  • The usual plot

    0.001 0.01 0.1m

    light (eV)

    10-4

    10-3

    10-2

    10-1

    100<

    mee

    > (

    eV)

    Normal

    = 0.4 eV

    mβ =

    0.2

    eV

    Σ =

    1 e

    V

    Σ =

    0.2

    eV

    Σ =

    0.1

    eV

    Σ =

    0.5

    eV

    mβ =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    0.001 0.01 0.1

    Inverted

    = 0.4 eV

    Σ =

    0.2

    eV

    Σ =

    0.1

    eV

    Σ =

    0.5

    eV

    Σ =

    1 e

    V

    mβ =

    0.2

    eV

    mβ =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    12

  • Plot against other observables

    0.01 0.1mβ (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    Normal

    = 0.4 eV

    Σ =

    0.1

    eV

    Σ =

    0.2

    eV

    Σ =

    0.5

    eV

    Σ =

    1 e

    V

    mβ =

    0.2

    eV

    Σ =

    1 e

    Vm

    β =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    0.01 0.1

    Inverted

    = 0.4 eV

    Σ =

    0.1

    eV

    Σ =

    0.2

    eV

    Σ =

    0.5

    eV

    Σ =

    1 e

    V

    mβ =

    0.2

    eV

    mβ =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    Complementarity of |mee| = U2ei mi and mβ =√

    |Uei|2m2i and Σ =∑

    mi

    13

  • Plot against other observables

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    0.1 1

    Σ mi (eV)

    Normal

    = 0.4 eV

    Σ =

    0.1

    eV

    Σ =

    0.2

    eV

    Σ =

    0.5

    eV

    Σ =

    1 e

    V

    mβ =

    0.2

    eV

    mβ =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    0.1 1

    Inverted

    = 0.4 eV

    Σ =

    0.1

    eV

    Σ =

    0.2

    eV

    Σ =

    0.5

    eV

    Σ =

    1 e

    V

    mβ =

    0.2

    eV

    mβ =

    0.3

    5 e

    V

    CPV(+,+)(+,-)(-,+)(-,-)

    Complementarity of |mee| = U2ei mi and mβ =√

    |Uei|2m2i and Σ =∑

    mi

    14

  • Neutrino Mass Matrix

    15

  • 0νββ and Ue3

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@eVD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0

    Dis

    fav

    ore

    db

    yC

    osm

    olo

    gy

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@eVD

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@eVD Dm31

    2 < 0

    Dm312 > 0

    sin2 2Θ13 = 0.10

    Dis

    fav

    ore

    db

    yC

    osm

    olo

    gy

    Disfavored by 0ΝΒΒ

    0.0001 0.001 0.01 0.1 1m @eVD

    0.0001

    0.001

    0.01

    0.1

    1

    ÈmeeÈ@eVD

    Lindner, Merle, W.R., hep-ph/0512143

    16

  • Vanishing effective mass. . .

    conspiracy of 7 parameters?

    (L1, L2) L3 (νR1 , νR2) eR µR τR (φ1, φ2) χ

    S3 2∗ 1S 2 1S 1S 1S 2 1S

    Z3 ω ω ω ω 1 ω2 ω ω

    leads to |mee| = 0 and

    tan2 θ13 =

    ∆m2⊙∆m2A

    sin2 θ12

    W.R., Tanimoto, Watanabe, 1201.4936

    17

  • From life-time to particle physics: Nuclear Matrix Elements

    SM vertex

    Nuclear Process Nucl

    Σi

    νiUei

    e

    W

    νi

    e

    W

    Uei

    Nucl

    18

  • From life-time to particle physics: Nuclear Matrix Elements

    0

    2

    4

    6

    8

    10

    48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

    Isotope

    NSMQRPA (Tue)

    QRPA (Jy)IBMIBM

    GCMPHFB

    Pseudo-SU(3)

    M′0ν

    76 82 96 100 128 130 136 150

    A

    0

    1

    2

    3

    4

    5

    6

    7

    8GCM

    IBM

    ISM

    QRPA(J)

    QRPA(T)

    M0ν

    0

    1

    2

    3

    4

    5

    6

    7

    8

    M0ν

    76Ge

    82Se

    96Zr 100Mo

    130Te 136Xe

    150Nd

    RQRPANSMIBM-2PHFBEDF

    Dueck, W.R., Zuber, PRD 83 Gomez-Cadenas et al., 1109.5515 Vogel, 1208.1992

    (current) uncertainty of factor 2 to 3, directly translates into uncertainty on

    particle physics parameter

    19

  • Isotope T 0ν1/2 [yrs] Experiment |mee|limmin [eV] |mee|

    limmax [eV]

    48Ca 5.8× 1022 CANDLES 3.55 9.91 ×0.9876Ge 1.9× 1025 HDM 0.21 0.53 ×1.04

    1.6× 1025 IGEX 0.25 0.63 ×1.0482Se 3.2× 1023 NEMO-3 0.85 2.08 ×1.0496Zr 9.2× 1021 NEMO-3 3.97 14.39 ×1.06

    100Mo 1.0× 1024 NEMO-3 0.31 0.79 ×1.06116Cd 1.7× 1023 SOLOTVINO 1.22 2.30 ×1.06130Te 2.8× 1024 CUORICINO 0.27 0.57 ×1.09136Xe 1.6× 1025 EXO-200 0.15 0.36 ×1.10150Nd 1.8× 1022 NEMO-3 2.35 5.08 ×1.12

    (recent reevaluation of phase space factors by Iachello+Kotila)

    HDM limit reached/improved by EXO-200 !

    20

  • EXO-200 vs. Klapdor

    T−1Ge = GGe |MGe|2 |mee|2 =

    (2× 1025 yrs

    )−1

    T−1Xe = GXe |MXe|2 |mee|2 ≤

    (1.6× 1025 yrs

    )−1

    Ge-claim is ruled out when

    TXe ≥ 2.9× 1024∣∣∣∣

    MGeMXe

    ∣∣∣∣

    2

    yrs

    With compilation from Vogel, 1208.1992:

    ∣∣∣∣

    MGeMXe

    ∣∣∣∣

    2

    4.0 (RQRPA) ⇒ TXe ≥ 1.2× 1025 yrs4.2 (NSM) ⇒ TXe ≥ 1.2× 1025 yrs2.5 (IBM-2) ⇒ TXe ≥ 7.3× 1024 yrs1.2 (EDF) ⇒ TXe ≥ 3.5× 1024 yrs

    21

  • Xe (yr)136 1/2T

    2410 2510 26102410

    2510

    2610

    68%

    CL

    EXO

    -200

    (thi

    s wo

    rk)

    90%

    CL

    Kam

    LAND

    -ZEN

    90%

    CL

    RQRP

    A-1

    QRPA

    -2

    IBM-

    2

    GCM

    NSM

    KK&K 68% CL

    Heidelberg-Moscow90% CL

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.2

    0.3

    0.4

    0.5

    0.3

    0.4

    0.5

    0.6

    0.7

    0.80.9

    1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.91

    Ge

    (yr)

    76 1/

    2T

    2410

    2510

    2610

    EXO, 1205.5608

    22

  • Experiment Isotope Mass of Sensitivity Status Start of Sensitivity

    Isotope [kg] T 0ν1/2 [yrs] data-taking 〈mν〉 [eV]

    GERDA 76Ge 18 3 × 1025 running ∼ 2011 0.17-0.42

    40 2 × 1026 in progress ∼ 2012 0.06-0.16

    1000 6 × 1027 R&D ∼ 2015 0.012-0.030

    CUORE 130Te 200 6.5 × 1026∗ in progress ∼ 2013 0.018-0.037

    2.1 × 1026∗∗ 0.03-0.066

    MAJORANA 76Ge 30-60 (1 − 2) × 1026 in progress ∼ 2013 0.06-0.16

    1000 6 × 1027 R&D ∼ 2015 0.012-0.030

    EXO 136Xe 200 6.4 × 1025 running ∼ 2011 0.073-0.18

    1000 8 × 1026 R&D ∼ 2015 0.02-0.05

    SuperNEMO 82Se 100-200 (1 − 2) × 1026 R&D ∼ 2013-15 0.04-0.096

    KamLAND-Zen 136Xe 400 4 × 1026 running ∼ 2011 0.03-0.07

    1000 1027 R&D ∼ 2013-15 0.02-0.046

    SNO+ 150Nd 132 1.8 × 1025 in progress ∼ 2014 0.09-0.18

    (with same lifetime: 150Nd and 100Mo do best. . .)

    23

  • With 0νββ one can

    • test Majorana nature of neutrinos

    • probe neutrino mass scale

    • test inverted ordering

    • extract Majorana phase

    • test flavor symmetry models: neutrino mass “sum-rules”

    24

  • Inverted Ordering

    Nature provides 2 scales:

    〈mν〉IHmax ≃ c213√

    ∆m2A and 〈mν〉IHmin ≃ c213√

    ∆m2A cos 2θ12

    requires O(1026 . . . 1027) yrs

    25

  • Ruling out Inverted Hierarchy

    |mee|IHmin =(1− |Ue3|2

    )√

    |∆m2A|(1− 2 sin2 θ12

    )=

    (0.016 . . . 0.020) eV 1σ

    (0.013 . . . 0.024) eV 3σ

    • small |Ue3|

    • large |∆m2A|

    • small sin2 θ12Current 3σ range of sin2 θ12 gives factor of 2 uncertainty for |mee|IHmin

    ⇒ combined factor of 16 in M × t× B ×∆E⇒ need precision determination of θ12

    Dueck, W.R., Zuber, PRD 83

    26

  • Sterile Neutrinos and 0νββ

    • recall: |mee|actNH can vanish and |mee|actIH ∼ 0.03 eV cannot vanish

    • |mee| = | |Ue1|2 m1 + |Ue2|2 m2 e2iα + |U2e3|m3 e2iβ︸ ︷︷ ︸

    mactee

    + |Ue4|2 m4 e2iΦ1︸ ︷︷ ︸

    mstee

    |

    • ∆m2st ≃ 1.8 eV2 and |Ue4| ≃ 0.13

    • sterile contribution to 0νββ (assuming 1+3):

    |mee|st ≃√

    ∆m2st |Ue4|2 ≃ 0.03 eV

    ≫ |mee|actNH≃ |mee|actIH

    • ⇒ |mee|NH cannot vanish and |mee|IH can vanish!

    usual phenomenology gets completely turned around!

    27

  • Usual plot gets completely turned around!

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    Normal Inverted

    3 ν (best-fit)1+3 ν (best-fit)

    0.001 0.01 0.1

    3 ν (best-fit)1+3 ν (best-fit)

    [10

    28

  • Mass Orderings

    ν4

    m2

    ν1,2,3

    ∆m241

    m2

    ν4

    ν1,2,3

    ∆m241

    ν4

    ν5

    ∆m241

    ∆m251

    m2

    ν1,2,3

    ν4

    m2

    ν5

    ν1,2,3

    ∆m241

    ∆m251

    νk

    ∆m2k1

    m2

    νj

    ν1,2,3

    ∆m2j1

    3 active neutrinos can be normally or inversely ordered

    29

  • 0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    1+3, Normal, SN 1+3, Inverted, SI

    3 ν (best-fit)3 ν (2σ)1+3 ν (best-fit)1+3 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)1+3 ν (best-fit)1+3 ν (2σ)

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    3+1, Normal, NS 3+1, Inverted, IS

    3 ν (best-fit)3 ν (2σ)3+1 ν (best-fit)3+1 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)3+1 ν (best-fit)3+1 ν (2σ)

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    2+3, Normal, SSN 2+3, Inverted, SSI

    3 ν (best-fit)3 ν (2σ)2+3 ν (best-fit)2+3 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)2+3 ν (best-fit)2+3 ν (2σ)

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    3+2, Normal, NSS 3+2, Inverted, ISS

    3 ν (best-fit)3 ν (2σ)3+2 ν (best-fit)3+2 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)3+2 ν (best-fit)3+2 ν (2σ)

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    1+3+1, Normal, SNSa 1+3+1, Inverted, SISa

    3 ν (best-fit)3 ν (2σ)1+3+1 ν (best-fit)1+3+1 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)1+3+1 ν (best-fit)1+3+1 ν (2σ)

    0.001 0.01 0.1

    mlight

    (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    1+3+1, Normal, SNSb 1+3+1, Inverted, SISb

    3 ν (best-fit)3 ν (2σ)1+3+1 ν (best-fit)1+3+1 ν (2σ)

    0.001 0.01 0.1

    3 ν (best-fit)3 ν (2σ)1+3+1 ν (best-fit)1+3+1 ν (2σ)

    Barry, W.R., Zhang, JHEP 1107

    30

  • Sterile Neutrinos, Seesaw and 0νββ

    • if the eV-steriles are from seesaw: individual cancellations in flavor symmetrymodels, e.g.:

    U2e2 m2 + U2e4 m4 = 0

    • if seesaw scale is below 100 MeV: No double beta decay!

    6∑

    i=1

    U2ei mi = 0 since M =

    0 mD

    mTD MR

    = U

    mdiagν 0

    0 MdiagR

    UT

    Barry, W.R., Zhang, JCAP 1201

    31

  • Non-Standard Interpretations:

    There is at least one other mechanism leading to Neutrinoless DoubleBeta Decay and its contribution is at least of the same order as the

    light neutrino exchange mechanism

    WL

    WR

    NR

    NR

    νL

    WL

    dL

    dL

    uL

    e−R

    e−L

    uL

    d̃R

    χ/g̃

    d̃Rχ/g̃

    dc

    dc

    uL

    e−L

    e−L

    uL

    W

    W

    ∆−−

    dL

    dL

    uL

    e−L

    e−L

    uL

    2g2vL hee

    ũL

    ũL

    χ/g̃

    χ/g̃

    dc

    dc

    e−L

    uL

    uL

    e−L

    W

    W

    dL

    dL

    uL

    e−L

    χ0

    χ0

    e−L

    uL

    Clear experimental signature:

    KATRIN and/or cosmology see nothing but 0νββ does

    32

  • Schechter-Valle theorem: no matter what process, neutrinos are Majorana:

    νe

    W

    e−

    d u u

    e−

    d

    νe

    W

    is 4 loop diagram: mν ∼1

    (16π2)4MeV5

    m4W

  • mechanism physics parameter current limit test

    light neutrino exchange∣

    ∣U2eimi

    ∣ 0.4 eV

    oscillations,

    cosmology,

    neutrino mass

    heavy neutrino exchange

    S2ei

    Mi

    2 × 10−8 GeV−1LFV,

    collider

    heavy neutrino and RHC

    V2ei

    Mi M4WR

    4 × 10−16 GeV−5flavor,

    collider

    Higgs triplet and RHC

    (MR)ee

    m2∆R

    M4WR

    10−15 GeV−5flavor,

    collider

    e− distribution

    λ-mechanism with RHC

    Uei S̃eiM2

    WR

    1.4 × 10−10 GeV−2flavor,

    collider,

    e− distribution

    η-mechanism with RHC tan ζ∣

    ∣Uei S̃ei

    ∣ 6 × 10−9flavor,

    collider,

    e− distribution

    short-range /R

    ∣λ′2111

    Λ5SUSY

    ΛSUSY = f(mg̃, mũL, m

    d̃R, mχi

    )

    7 × 10−18 GeV−5collider,

    flavor

    long-range /R

    sin 2θb λ′131 λ′113

    1

    m2b̃1

    − 1m2

    b̃2

    ∼GFq

    mb

    ∣λ′131 λ′113

    Λ3SUSY

    2 × 10−13 GeV−2

    1 × 10−14 GeV−3

    flavor,

    collider

    Majorons |〈gχ〉| or |〈gχ〉|2 10−4 . . . 1

    spectrum,

    cosmology

    34

  • Distinguishing Mechanisms

    The inverse problem of 0νββ

    1.) Other observables (LHC, LFV, KATRIN, cosmology,. . .)

    2.) Decay products (individual e− energies, angular correlations, spectrum,. . .)

    3.) Nuclear physics (multi-isotope, 0νECEC, 0νβ+β+,. . .)

    35

  • 1.) Distinguishing via other Observables

    0.01 0.1mβ (eV)

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )

    Normal

    CPV(+,+)(+,-)(-,+)(-,-)

    0.01 0.1

    Inverted

    CPV(+)(-)

    θ12

    10-3

    10-2

    10-1

    100

    <m

    ee>

    (eV

    )0.1 1

    Σ mi (eV)

    Normal

    CPV(+,+)(+,-)(-,+)(-,-)

    0.1 1

    Inverted

    CPV(+)(-)

    standard mechanism: KATRIN, cosmology

    36

  • Energy Scale:

    Note: standard amplitude for light Majorana neutrino exchange:

    Al ≃ G2F|mee|q2

    ≃ 7× 10−18( |mee|0.5 eV

    )

    GeV−5 ≃ 2.7 TeV−5

    if new heavy particles are exchanged:

    Ah ≃c

    M5

    ⇒ for 0νββ holds:

    1 eV = 1 TeV

    ⇒ Phenomenology in colliders, LFV

    37

  • Examples

    • R-parity violating supersymmetry (Allanach, Paes, Kom)

    • TeV seesaw neutrinos (Ibarra, Petcov et al.; Mitra, Senjanovic, Vissani)

    • Left-right symmetric theories (Senjanovic et al.; Goswami et al.)

    • Color seesaw (Choubey, Duerr, Mitra, W.R.)

    . . .focus only on one example here. . .

    38

  • Left-right symmetry

    WR

    WR

    dR

    dR

    uR

    e−R

    e−R

    uR

    NRi

    WR WR

    ūR

    dR

    e−R e−

    R

    dR

    ūR

    NRi

    Senjanovic et al., 1011.3522; 1103.1627

    39

  • WR WR

    ūR

    dR

    e−R e−

    R

    dR

    ūR

    NRi[T

    eV

    ]

    Nm

    0

    1

    2

    [TeV] RW

    m1 1.5 2 2.5

    -1Ldt = 2.1 fb∫

    , Expectedµ+eµµWith mixing, ee+, Observedµ+eµµWith mixing, ee+

    , ExpectedµµNo mixing, ee+, ObservedµµNo mixing, ee+

    SS+OS

    MajoranaN

    = 7 TeVs

    forbid

    den

    RWm ≥

    Nm

    ATLAS

    40

  • Left-right symmetry

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    W

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    NRi

    WR

    WR

    dR

    dR

    uR

    e−R

    e−R

    uR

    NRi

    WL

    WL

    δ−−L

    dL

    dL

    uL

    e−L

    e−L

    uL

    2g2vL hee

    WR

    WR

    δ−−R

    dR

    dR

    uR

    e−R

    e−R

    uR

    2g2vR hee

    WL

    WR

    NR

    NR

    νL

    WL

    dL

    dL

    uL

    e−R

    e−L

    uL

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    41

  • Left-right symmetry

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    W

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    NRi

    WR

    WR

    dR

    dR

    uR

    e−R

    e−R

    uR

    NRi

    U2ei miS2eiMi

    V 2eiM4WR Mi

    WL

    WL

    δ−−L

    dL

    dL

    uL

    e−L

    e−L

    uL

    2g2vL hee

    WR

    WR

    δ−−R

    dR

    dR

    uR

    e−R

    e−R

    uR

    2g2vR hee

    WL

    WR

    NR

    NR

    νL

    WL

    dL

    dL

    uL

    e−R

    e−L

    uL

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    ≤ U2ei miM2∆L

    V 2ei MiM4WR M

    2∆R

    Uei Tei tan ζUei TeiM2WR

    42

  • Left-right symmetry

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    W

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    NRi

    WR

    WR

    dR

    dR

    uR

    e−R

    e−R

    uR

    NRi

    0.4 eV 2× 10−8 GeV−1 4× 10−16 GeV−5

    WL

    WL

    δ−−L

    dL

    dL

    uL

    e−L

    e−L

    uL

    2g2vL hee

    WR

    WR

    δ−−R

    dR

    dR

    uR

    e−R

    e−R

    uR

    2g2vR hee

    WL

    WR

    NR

    NR

    νL

    WL

    dL

    dL

    uL

    e−R

    e−L

    uL

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    — 10−15 GeV−5 6× 10−9 1.4× 10−10 GeV−2

    43

  • Simple and interesting scenario

    mν = ML −mD M−1R mTD = vL h−mD (vR f)−1 mTDsuppose ML dominates in mν and h = f : ⇒ MR ∝ mν

    Triplet can mediate µ → 3e at tree-level: m∆ ≫ Mi

    ⇒ ANR ≃ G2F(

    mWMWR

    )4 ∑ V 2eiMi

    ∝∑ U2ei

    mi

    Tello et al., 1011.3522

    44

  • Interplay of diagrams in left-right symmetry

    Interference of diagrams, constraints from LFV, neutrino data,. . .

    0.0001 0.001 0.01 0.1

    mlight (eV)

    1026

    1028

    1030

    1032

    [T1

    /2] δ

    R (

    yrs)

    GERDA 40kg

    GERDA 1T

    Normal

    0.0001 0.001 0.01 0.1

    Inverted

    0.0001 0.001 0.01 0.1

    mlight (eV)

    1024

    1026

    1028

    1030

    [T1

    /2] N

    R (

    yrs)

    GERDA 40kg

    GERDA 1T

    Normal

    0.0001 0.001 0.01 0.1

    Excluded by HDM

    InvertedmδR = 3.5 TeVmδR

    = 2 TeV

    mδR = 1 TeV

    0.0001 0.001 0.01 0.1

    mlight (eV)

    1024

    1026

    1028

    1030

    [T1

    /2] t

    yp

    e I

    I (yrs)

    GERDA 40kg

    GERDA 1T

    Normal

    mδR = 3.5 TeV

    mδR = 2 TeV

    mδR = 1 TeV

    [T1/2]ν+NR

    0.0001 0.001 0.01 0.1

    Inverted

    mδR = 3.5 TeV

    mδR = 2 TeV

    mδR = 1 TeV

    [T1/2]ν+NR

    Barry, W.R., to appear; see also Goswami et al., 1204.2527

    45

  • Cleanest Probe: e− e− collisions: “inverse 0νββ”

    • LR-symmetry: (Barry, Dorame, W.R., 1204.3365)

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    NRi

    νLi

    NRi

    e−

    e−

    WR

    WL

    T ∗ei

    Uei

    2500. 2600. 2700. 2800. 2900. 3000.

    10-6

    10-5

    10-4

    0.001

    0.01

    0.1

    e−e− → W−L W−

    R , s = 9 TeV2

    σ[fb]

    mWR[GeV]

    • SUSY: (Kom, W.R., 1110.3220)

    χ̃0

    uLdc

    ẽL

    eL

    λ′∗111

    uLdc

    ẽL

    eL

    λ′∗111

    χ̃0

    uL

    dc

    ẽL

    eLλ′111

    uL

    dcẽL

    eLλ′111

    100 125 150 175 200 225 250 275

    m∼χ0 [GeV]

    100

    125

    150

    175

    200

    225

    250

    275

    m∼ eL [

    GeV]

    -6

    -4

    -2

    0

    2

    BR

    E(beam)

    √s=500GeV

    log10(σ/fb)

    46

  • “Inverse 0νββ”

    this is not

    76Se++ + e− + e− → 76Ge

    but rather

    e− + e− → W− +W−

    Rizzo; Heusch, Minkowski; Gluza, Zralek; Cuypers, Raidal;. . .

    47

  • Inverse Neutrinoless Double Beta Decay

    1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

    Mi [GeV]

    1e-14

    1e-12

    1e-10

    1e-08

    1e-06

    0,0001

    0,01

    1

    100

    10000

    1e+06

    1e+08

    σ [

    fb]

    e- e

    - ---> W

    - W

    - , s = 16 TeV

    2

    |Sei

    |2 = 1.0

    |Sei

    |2 = 0.0052

    |Sei

    |2 = 5.0 10

    -8 (M

    i /GeV)

    W.R., PRD 81

    d cos θ=

    G2F32π

    {∑

    (mν)i U2ei(

    t

    t− (mν)i+

    u

    u− (mν)i

    )}2

    48

  • Inverse Neutrinoless Double Beta Decay

    Extreme limits:

    • light neutrinos:

    σ(e−e− → W−W−) = G2F

    4π|mee|2 ≤ 4.2 · 10−18

    ( |mee|1 eV

    )2

    fb

    ⇒ way too small• heavy neutrinos:

    σ(e−e− → W−W−) = 2.6 · 10−3( √

    s

    TeV

    )4 (S2ei/Mi

    5 · 10−8GeV−1)2

    fb

    ⇒ too small• √s → ∞:

    σ(e−e− → W−W−) = G2F

    (∑

    U2ei (mν)i)2

    ⇒ amplitude grows with √s? Unitarity??

    49

  • Unitarity

    high energy limit√s → ∞:

    σ(e−e− → W−W−) = G2F

    (∑

    U2ei (mν)i)2

    ↔ amplitude grows with √s?Answer: exact see-saw relation U2ei (mν)i = 0

    M =

    0 mD

    mTD MR

    = U

    mdiagν 0

    0 MdiagR

    UT

    if Higgs triplet is present: unitarity also conserved

    σ(e−e− → W−W−) = G2F

    ((U2ei (mν)i − (mL)ee

    )2= 0

    W.R., PRD 81

    50

  • Inverse 0νββ and RPV SUSY

    W = λ′111L1Q1Dc1 ⇒ e−e− → 4 jets

    χ̃0

    uLdc

    ẽL

    eL

    λ′∗111

    uLdc

    ẽL

    eL

    λ′∗111

    χ̃0

    uL

    dc

    ẽL

    eLλ′111

    uL

    dcẽL

    eLλ′111

    0νββ resonant selectron production

    via gauge interactions

    51

  • Cross section

    σ(e−Le−L → ẽ−L ẽ−L ) =

    πα2|gL|4s

    2m2χ̃0

    s+ 2m2χ̃0 − 2m2ẽL

    [

    L+2λ

    (s+ 2m2χ̃0 − 2m2ẽL)2 − λ2

    ]

    where

    L = lns+ 2m2χ̃0 − 2m2ẽL + λs+ 2m2χ̃0 − 2m2ẽL − λ

    λ = λ(s,m2ẽL ,m2ẽL) =

    s2 − 4sm2ẽLKeung, Littenberg, 1983

    adjustable parameters

    mχ̃0 , mg̃ , mẽL , mũL , md̃R , λ′111

    squarks and gluinos decoupled;

    competing decays ẽL → e χ̃0 and ẽL → jj

    52

  • competing decays ẽL → e χ̃0 and ẽL → jj:

    • 0νββ-limit goes with Λ5SUSY ⇒ λ′111 can be O(1) and thus BR(ẽL → jj) >BR(ẽL → e χ̃0)

    • even for low masses, large BR(ẽL → jj) possible for narrow band aroundmẽL −mχ̃0 ≪ mẽL

    reconstruction:

    • mass and width of ẽL: dijet invariant mass distribution

    • BR(ẽL → jj) and thus λ′111: ẽL decays

    • mass of χ̃0: rate of e−Le−L → ẽ−L ẽ−L

    53

  • 100 125 150 175 200 225 250 275

    m∼χ0 [GeV]

    100

    125

    150

    175

    200

    225

    250

    275

    m∼ e L

    [G

    eV]

    -6

    -4

    -2

    0

    2

    BR

    E(beam)

    √s=500GeV

    log10(σ/fb)

    250 500 750 1000 1250 1500 1750

    m∼χ0 [GeV]

    250

    500

    750

    1000

    1250

    1500

    1750

    m∼ e L

    [G

    eV]

    -3

    -2

    -1

    0

    BR

    E(beam)

    √s=3000GeV

    log10(σ/fb)

    1.9× 1025 yrs 1.0× 1027 yrsKom, W.R., 1110.3220

    54

  • Summary

    55

  • 2.) Distinguishing via decay products

    SuperNEMO

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0 0.5 1 1.5 2 2.5 3

    E2e (MeV)

    Nu

    mb

    er

    of e

    ven

    ts/0

    .05

    Me

    V

    (a)

    100Mo7.369 kg.y

    219,000bbevents

    S/B = 40

    NEMO 3 (Phase I)

    0

    2000

    4000

    6000

    8000

    10000

    12000

    -1 -0.5 0 0.5 1

    cos( Θ)

    Nu

    mb

    er

    of e

    ven

    ts

    (b)

    100Mo7.369 kg.y

    219,000bbevents

    S/B = 40

    NEMO 3 (Phase I)

    • source foils in between plastic scintillators

    • individual electron energy, and their relative angle!

    56

  • 2.) Distinguishing via decay products

    Consider standard plus λ-mechanism

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    dΓdE1 dE2 d cos θ

    ∝ (1− β1 β2 cos θ) dΓdE1 dE2 d cos θ ∝ (E1 − E2)2 (1 + β1 β2 cos θ)

    Arnold et al., 1005.1241

    57

  • 2.) Distinguishing via decay products

    Defining asymmetries

    Aθ = (N+ −N−)/(N+ +N−) and AE = (N> −N +N

  • 3.) Distinguishing via nuclear physics

    Gehman, Elliott, hep-ph/0701099

    3 to 4 isotopes necessary to disentangle mechanism

    59

  • to better estimate error range: correlations need to be understood:

    Faessler, Fogli et al., PRD 79

    ellipse major axis: SRC (blue, red) and gA

    ellipse minor axis: gpp

    60

  • Distinguishing via decay products

    Consider standard plus λ-mechanism

    W

    νi

    νi

    W

    dL

    dL

    uL

    e−L

    e−L

    uL

    Uei

    q

    Uei

    WR

    NR

    NR

    νL

    WL

    dR

    dL

    uR

    e−R

    e−L

    uL

    dΓdE1 dE2 d cos θ

    ∝ (1− β1 β2 cos θ) dΓdE1 dE2 d cos θ ∝ (E1 − E2)2 (1 + β1 β2 cos θ)

    Arnold et al., 1005.1241

    61

  • Supersymmetry: short range

    ẽL

    χ

    ẽL

    χ

    dc

    dc

    uL

    e−L

    e−L

    uL

    ẽL

    χ

    ũL

    χ

    dc

    dc

    uL

    e−L

    uL

    e−L

    ũL

    ũL

    χ/g̃

    χ/g̃

    dc

    dc

    e−L

    uL

    uL

    e−L

    d̃R

    χ

    χ

    ẽL

    dc

    dc

    uL

    e−L

    e−L

    uL

    d̃R

    χ/g̃

    χ/g̃

    ũL

    dc

    dc

    uL

    e−L

    uL

    e−L

    d̃R

    χ/g̃

    d̃Rχ/g̃

    dc

    dc

    uL

    e−L

    e−L

    uL

    A/R1 ≃λ′2111Λ5SUSY

    62

  • Supersymmetry: short range

    interplay with LHC:

    ẽL

    χ

    ũL

    χ

    dc

    dc

    uL

    e−L

    uL

    e−L

    ẽL ũL

    u

    dc

    e−L u

    dc

    e−L

    χ

    “resonant selectron production”

    σ̂ ∝ λ′2111

    Allanach, Kom, Paes, 0903.0347

    63

  • tanβ = 10, A0 = 0, 10 fb−1

    M0/GeV

    M1/2/G

    eV

    T 0νββ1/2 (Ge) < 1.9× 1025 yrs

    100 > T 0νββ1/2 (Ge)/1025

    yrs > 1.9

    T 0νββ1/2 (Ge) > 1× 1027 yrs

    → observation in white region in conflict with 0νββ→ if 0νββ observed: dark yellow region tests R/ SUSY mechanism

    → light yellow region: no significant R/ contribution to 0νββ

    64

  • Supersymmetry: long range

    νe

    b̃c

    W

    dc

    dL

    uL

    e−L

    e−L

    uL

    ν̃e

    d

    bc

    b

    dc

    Ab/R2 ≃ GF1

    qUei mb

    λ′131 λ′113

    Λ3SUSY

    λ′131 λ′113

    Λ2SUSY0νββ B0-B̄0 mixing

    65

  • Flavor Symmetry Models

    suppose your model predicts TBM:

    (mν)TBM =

    x y y

    · z + x y − z· · z + x

    m1 = x− y , m2 = x+ 2y , m3 = x− y + 2zif z = y + x/2, then:

    m1 = x− y , m2 = x+ 2y , m3 = 2x+ y

    and one has a neutrino mass sum-rule

    m1 +m2 = m3

    66

  • The Zoo (of A4 models)

    Barry, W.R., PRD 81, updated regularly on

    http://www.mpi-hd.mpg.de/personalhomes/jamesb/Table_A4.pdf

    67

  • Sum-rules in Models and 0νββ

    constrains masses and Majorana phases

    Barry, W.R., NPB 842

    68

  • 10-3

    10-2

    10-1

    <m

    ee>

    (eV

    )

    0.01 0.1

    mβ (eV)

    10-3

    10-2

    10-1

    0.01 0.1

    3σ 30% error3σ exactTBM exact

    2m2 +

    m3 =

    m1

    m1 +

    m2 =

    m3

    InvertedNormal

    10-3

    10-2

    10-1

    <m

    ee>

    (eV

    )

    0.01 0.1

    mβ (eV)

    10-3

    10-2

    10-1

    0.01 0.1

    3σ 30% error3σ exactTBM exact

    Normal Inverted2/m

    2 + 1/m

    3 = 1/m

    11/m

    1 + 1/m

    2 = 1/m

    3

    m1 +m2 −m3 = ǫmmaxstable: new solutions not before ǫ ≃ 0.2

    69