Neutrinos, Double Beta Decay, and Supernova DynamicsNeutrinos, Double Beta Decay, and Supernova...

35
W. Bauer Slide 1 Neutrinos, Double Beta Decay, and Supernova Dynamics Wolfgang Bauer Michigan State University

Transcript of Neutrinos, Double Beta Decay, and Supernova DynamicsNeutrinos, Double Beta Decay, and Supernova...

W. Bauer

Slide 1

Neutrinos, Double Beta Decay, and Supernova Dynamics

Wolfgang Bauer Michigan State University

W. Bauer

Slide 2

1 meV/c2 1 eV/c2 1 keV/c2 1 MeV/c2 1 GeV/c2 1 TeV/c2

tbτντ

csµνµ

udeνe

Mass Hierarchy

W. Bauer

Slide 3

1 GeV/c2 1 TeV/c2

t

b

c

s

u

d− 13 e

+ 23 e

q

m

W +W −

0

1 MeV/c2

Beta Decays β

− : q→ q '+ − + ν; mq > mq ' + m + mν

β+ : q→ q '+ + + ν; mq > mq ' + m + mν

Largest Suppressed Highly Suppressed

W. Bauer

Slide 4

π ±π 0

η K ±

KL0

KS0

J /ψ

ϒ

D

B

η 'ωρ

φK *

Composites: Mesons!

Strong

Electromagnetic

Weak

W. Bauer

Slide 5

Composites: Isotopes!

W. Bauer

Slide 6

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 7

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 8

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 9

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 10

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 11

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 12

Favorite Decay Channels

W. Bauer

Slide 13

d W −

ue−

νe

md > mu + me−+ mνe

W. Bauer

Slide 14

d W −

u

e−

νe

d

du

un p

mn > mp + me−+ mνe

W. Bauer

Slide 15

d W −

u

e−

νe

d

du

un p

mNZ A

> mN−1Z+1 A

+ me−+ mνe

NZ A

N −1Z +1 A

Already counted in atomic mass that contains Z+1 electrons

W. Bauer

Slide 16

u W +

d

e+

νe

d

du

unp

mNZ A

> mN+1Z−1 A

+ 2me++ mνe

NZ A

N +1Z −1 A

Beta+ decay: positron emission

W. Bauer

Slide 17

uW +

d

e− νe

d

du

unp

mNZ A

> mN+1Z−1 A

+ mνe

NZ A

N +1Z −1 A

Beta+ decay: electron capture

W. Bauer

Slide 18

Favorite Decay Channels

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 19

N

Z

3482 Se34

81 Se3480 Se 34

83 Se

3582Br35

81Br3580Br 35

83Br 3584Br

3681Kr 36

82Kr 3683Kr 36

84Kr 3685Kr

3479Se

3782Rb 37

83Rb 3784Rb 37

85Rb 3786Rb

3378As 33

79As 3380As 33

81As 3382As

W. Bauer

Slide 20

3482 Se

3682Kr

3582Br 37

82Rb

3882Sr

3982 Y 40

82 Zr

4182Nb31

82Ga

3282Ge

3382As

W. Bauer

Slide 21

Double Beta Decay Isotopes •  Only 12 known isotopes exhibit this

decay •  48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd,

128Te, 130Te, 134Xe, 136Xe, 150Nd, and 160Gd

•  Typical lifetimes ~ 1019 years (billion times the lifetime of universe)

•  First observed in 1986 by Michael Moe et al. for 82Se

W. Bauer

Slide 22

Life Times and Q-Values

W. Bauer

Slide 23

3678Kr

54124 Xe

N +1 -1 -2

Z Z-1 Z-2

Z+1

+2 Z+2

W. Bauer

Slide 24

Double Beta+ Candidate 78Kr •  Mass(78Kr) = 77.9203 GeV

Mass(78Se) = 77.9173 GeV Mass difference = 2.85 MeV

•  2 EC, e+EC (threshold 1.022 MeV), and e+e+ (threshold 2.044 MeV) channels are all open (in principle!)

W. Bauer

Slide 25

Double Beta+ Candidate 78Kr •  Typical predicted half-life* ~ 1022 years •  Need N ~ 1025 atoms of 78Kr •  Natural abundance of 78Kr = 0.35% •  Need N ~ 3•1028 atoms of natKr •  Need 0.168 kg*(3•1028)/(6•1023) =

90 tons = 40,000 liters of natKr •  Cost: ~$200,000

* A.Staudt, K.Muto and H.V.Klapdor-Kleingrothaus, “Nuclear matrix elements for double positron emission”, Phys. Lett. B268 (1991) 312

W. Bauer

Slide 26

Detection

•  Gamma ray detectors for 511 keV Photons and/or photons from K-shell ionization cascades

•  Detection of single atom of Selenium a la Ray Davis

•  Detection of positron paths in TPC (perhaps liquid Kr, or perhaps even better high pressure gas Kr (0.1g/cm3)

W. Bauer

Slide 27

Liquid Argon TPC •  One example for

LANNDD (Liquid Argon Neutrino and Nucleon Decay Detector)

•  Smallest shown: V = 125 m3

•  Design can be taken over with slight modifications (rhoAr /rhoKr = 1.65/2.41) D.B. Cline and F. Sergiampietri, “A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics”, http://arxiv.org/abs/astro-ph/0509410

W. Bauer

Slide 28

Previous Experiment •  tau > 0.9•1020 years •  J.M. Gavriljuk et al.,

Phys. Atom. Nuclei 61, 1287 (1998)

W. Bauer

Slide 29

Neutrino-less Double Beta decay •  Only possible if neutrino is its own anti-particle •  Violation of Standard Model

From: DUSEL_121306.pdf

W. Bauer

Slide 30

Current lower half-life limits

Compiled by Steven Elliott, LANL, 2006)

W. Bauer

Slide 31

Could it be detected? •  Monte Carlo:

5 body vs. 3 body phase space with constant or Fermi cross sections

•  Importance sampling with N-body event generator GENBOD (F. James, CERN library)

•  Lorentz-invariant Fermi phase space •  Respects all conservation laws (energy,

momentum) and uses proper reaction Q-value

W. Bauer

Slide 32

Monte Carlo Events Neutrino Positron Recoil Nucleus

3d momentum space event displays in cm-system

W. Bauer

Slide 33

Positron Energy distributions •  Monte Carlo:

5 body vs. 3 body phase space with constant or Fermi cross sections

•  Here: 106 events •  More realistic:

101-102 events

W. Bauer

Slide 34

Coincidence Counts •  In 0nu case the

daughter nucleus receives almost vanishing recoil energy

•  Clear signal •  (Note: not true for

recoil momentum of daughter nucleus)

W. Bauer

Slide 35

Background: 2 simult. Beta+ decays •  Very rare •  But we are dealing

a very rare signal!