Nano-electronics of high κdielectrics on high mobility channel semiconductors for...

55
Nano-electronics of high κ dielectrics on high mobility channel semiconductors for key technologies beyond Si CMOS T. D. Lin, P. Chang, M. L. Huang, H. C. Chiu, C. A. Lin, W. H. Chang, Y. J. Lee, Y. C. Chang, and Y. H. Chang J. Kwo and M. Hong National Tsing Hua University, Hsinchu, Taiwan 1 AOARD

Transcript of Nano-electronics of high κdielectrics on high mobility channel semiconductors for...

  • Nano-electronics of high κ dielectrics on high mobility channel semiconductors for key

    technologies beyond Si CMOS

    T. D. Lin, P. Chang, M. L. Huang, H. C. Chiu, C. A. Lin, W. H. Chang, Y. J. Lee, Y. C. Chang, and Y. H. Chang

    J. Kwo and M. Hong

    National Tsing Hua University, Hsinchu, Taiwan1

    AOARD

  • Electron mobilities in GaAs, Si, and Ge

    Solid curve: theory with combined polar and ionized-impurity scattering (Ehrenreich: JAP 32, 2155, 1961) Experimental points o: Reid and Willardson: J. Electronics and Control, 5, 54 (1958) ▲: Weisberg, Rosi, and Herkart: Metallurgical Soc. Conf., v.5 “Properties of elemental and compound semiconductors, Interscience Publishers, New York, p.275

    GaAs Si and GeMeasured drift

    mobility in Si and Ge(F. J. Morin and J. P. Maita, Phys. Rev.,

    94, 1526, (1954) and 96, 28 (1954))

    DRIFT MOBILITIES (cm2/ V-s) in Ge, Si, and GaAs at 300KGe Si GaAs

    μn μp μn μp μn μpvalue at 300K 3900 1900 1400 470 8500 340

    Temperature dependence

    T -1.66 T -2.33 T -2.5 T -2.7 ― T -2.3

  • Background leading to unpin surface Fermi level in III-V compound semiconductors

    Late 1980s to early 1990s, problems in then AT&T’s pump lasers (980 nm) for undersea optical fiber cable (trans-Atlantic)

    Semiconductor facet (HR, AR) coating Reducing defects between InGaAs (GaAs) and coating

    dielectrics Passivation of the facets Electronic passivation much more stringent than

    optical passivation (110) vs (100) of InGaAs (GaAs)

  • Pioneering work of GaAs and InGaAs MOSFET’s using Ga2O3(Gd2O3) at Bell Labs w/o 2 overlayers 1994

    novel oxide Ga2O3(Gd2O3) to effectively passivate GaAs surfaces 1995

    establishment of accumulation and inversion in p- and n-channels in Ga2O3(Gd2O3)-GaAs MOS diodes with a low Dit of 2-3 x 1010 cm-2 eV-1(IEDM)

    1996 first e-mode GaAs MOSFETs in p- and n-channels with inversion (IEDM) Thermodynamically stable

    1997 e-mode inversion-channel n-InGaAs/InP MOSFET with gm= 190 mS/mm, Id = 350 mA/mm, and

    mobility of 470 cm2/Vs (DRC, EDL) 1998

    d-mode GaAs MOSFETs with negligible drain current drift and hysteresis (IEDM) e-mode GaAs MOSFETs with improved drain current (over 100 times) Dense, uniform microstructures; smooth, atomically sharp interface; low leakage currents

    1999 GaAs power MOSFET Single-crystal, single-domain Gd2O3 epitaxially grown on GaAs

    2000 demonstration of GaAs CMOS inverter

  • 1897 J. J. Thomson discovery of electron

    1947 The Transistor

    2007 High k + metal gate on Si for 45 nm node CMOS

    What next – III-V InGaAs, GaN, Ge MOS ?

    Mervin Kelly, the then Director of Res. at Bell Labs, had predicted the problem and had already taken action to find a solution.

    Although relays and vacuum tubes were apparently making all things possible in telephony, he had predicted for some years that the low speed of relays and the short life and high power consumption of tubes would eventually limit further progress in telephony and other electronic endeavors. In the summer of 1945, Kelly had established a research group at Bell Labs to focus on the understanding of semiconductors. The group also had a long-term goal of creating a solid-state device that might eventually replace the tube and the relay.

  • 6

    For Chip Makers, Hybrids May Be a Way Forward – NYTimes (Dec. 2009)By John MarkoffSearching for new ways to make computers that run faster and use less power, the chip industry is once again eyeing some exotic materials that can offer great speed, but have been more costly and difficult to manufacture than silicon.The materials, so-called III-V semiconductors, include compounds like gallium arsenide and indium phosphide. The have found their way into military and communications uses, but have largely been relegated to niches by more standard silicon-based manufacturing processes. The legendary supercomputer designer Seymour Cray used gallium arsenide in his Cray 3 and Cray 4 designs. In general, though, the materials have not had the low-power characteristics that have made conventional silicon chips so cost-effective.Sometime in the future, however, a new kind of hybrid chip might be made possible by manufacturing techniques that essentially glue together materials with incompatible molecular structures. This could result in chips that integrate radio or optical communications functions. It could also make it possible to run the III-V-based transistors at lower power without losing all of their speed advantages.Intel executives said the new class of transistors had no immediate product applications, but could help in the future in scaling transistors down to even more Lilliputian dimensions. The company is currently manufacturing chips at the 45-nanometer scale — a measure of minimum transistor feature size — and at this week’s meeting it will describe working chips at the next step down, 32 nanometers. Intel can now place about one billion transistors in its most advanced microprocessors, and the next step toward smaller scale, which will double the number of transistors available to circuit designers, will probably take place toward the end of 2009.It might be four chip generations, however, before Intel adds the new hybrid approach to its commercial chips, said Mike Mayberry, the company’s director of components research.The new technology could have widespread applications in consumer electronics products.During a news conference on Monday, industry executives expressed optimism about the new technique, which they said was still years away from commercialization.

    exotic materials compounds like gallium arsenide and indium phosphidea new kind of hybrid chip, integrating radio or optical communications III-V-based transistors at lower power without losing all of their speed advantagesMOSFET, Not MESFET, HEMT four chip generations

    http://bits.blogs.nytimes.com/author/john-markoff/�http://bits.blogs.nytimes.com/author/john-markoff/�

  • Motivation- Why InGaAs, Ge? Why MOSFET?Interfacial layer free?? Interfacial perfection → SiO2/Si

    Outline

    Experimental- Deposition of Ga2O3(Gd2O3) [GGO]- Characterization of GGO/Ge interface usingstructual (RHEED, HR-TEM),

    - Electrical analyses for MOS devices, including Quasi-static C-V and Charge pumping measurement

    Inversion-channel InGaAs, Ge MOSFET’s and comparison

    Oxide scalability and thermodynamical stabilityConclusion

    7

    K. Saraswat, et al., Mat. Sci. and Eng. B 135, 242 (2006). (Stanford U.)

    Ge

    Si SiO2

    HfO2

    B. De Jaeger, et al., Microelectron. Eng. 80, 26 (2005). (IMEC)

    SiGeON

    GeO2

    Ge

    GeO2

    K. Kita, et al., App. Surf. Sci. 254 (2008). (U. of Tokyo)

    GGO

    Si

    GGO

    GaAs

    Direct deposition of high κ GGO on Si & GaAs

    M. Hong, et al., Appl. Phys. Lett. 76, 312 (2000).

    T. D. Lin, et al., J. Cryst. Growth, 301, 386 (2007).

    Experimental- Novel deposition of MBE-Ga2O3(Gd2O3) [GGO] and ALD oxides- Characterization of oxide/InGaAs,Ge interface usingstructural (RHEED, HR-TEM), and chemical (in-situ AR-XPS) analyses

    Amorphous GGO

    Cleaned Ge surface

    High-κ

  • Do we need a new methodology for GaAs passivation?A. M. Green and W. E. SpicerStanford UniversityJVST A11(4), 1061, 1993

    “A new methodology for passivating compound semiconductors is presented in which two overlayers are used. In this approach, the first layer defines the surface electronically and the second provides long term protection.”

    Sulfur passivation –Sandroff et al, Bell Labs APL51, 33, 1987Sb passivation – Cao et al, Stanford Surf. Sci. 206, 413, 1988

    Is it possible to have a III-V (GaAs) MOS, similar to SiO2/Si, in which a low Dit, a low J, thermodynamic stability at high temp. (>800°C), single layer of gate dielectric, no S and Sb, etc are achievable?

    YES!!!Is it necessary to have GeON as an interfacial layer in Ge MOS? No!!!

  • oxideMBE

    in-situXPS

    oxide & metal

    MBE

    III-VMBE

    Si-GeMBE

    annealing& metalchamberWafer in

    Multi-chamber MBE/in-situ analysis system

    In-situSPM SMOKE

    metalchamber

    ALD

    ALD

  • Pioneer Work : Single Crystal Gd2O3 Films on GaAs

    GaAsa=5.65Å

    [001]

    (110)

    [110]a= 10.81Å

    1: 2 match

    (100)

    [110]

    [110]

    3: 4 match

    O

    Gd

    Ga

    View along GaAs [110]

    Gd2O3

    Mn2O3 Structure

    Gd2O3 (110) 25Å

    M. Hong, J. Kwo et al, Science 283, p.1897, 1999

    -10 -8 -6 -4 -2 0 2 4 6 8 1010-12

    1x10-10

    1x10-8

    1x10-6

    1x10-4

    1x10-2

    1x100

    1x102-10 -8 -6 -4 -2 0 2 4 6 8 10

    t=260A t=185A t=140A t=104A t=45A t=25A Gd2O3 on Si, 40A

    J L (A

    /cm

    2 )

    E [MV/cm)

    EOT0.8 nm

    SiO21.5 nm

    Low Dit’sand low JL

  • Single domain, epitaxial film in (110) Mn2O3 structure

    ULTRAHIGH VACUUM DEPOSITION OF OXIDES

    Gd/(Ga+Gd) > 20%Gd+3 stabilize Ga+3

    GaAs

    a-(Ga,Gd)2O3x-tal Gd2O3

    Mixed Oxide (Ga,Gd)2O3

    Epitaxy

    Pure Gd2O3 Film

    x-tal Gd2O3

    GaAs

    Initial thinking: to attain Ga2O3 film for passivationHigh-purity single crystal Ga5Gd3O12 (GGG) source

    Evaporation (sublime) by e-beam

    Gd2O3 ionic oxideTm > 4000K

    Ga2O3 more covalent oxideTm ~ 2000K

    Ga2O3 evaporated mostly, and formed amorphous Ga2O3 film

    High Resolution TEM of (Ga,Gd)2O3 on GaAs

    Epitaxy

  • Initial growth of Ga2O3(Gd2O3) 1.1 nm thick

    X-ray diffraction of normal scan and rocking curve

    In-situ RHEED pattern showing a single crystal growth

  • MBE – compound semiconductor growth – A. Y. Cho (National Medal of Science 1993 and National Medal of Technology 2007)

    MBE – metal and oxide growth – J. Kwo (first in discovering anti-ferromagnetic coupling through non-magnetic layer in magnetic superlattices PRL’s 1985 – 1986)

    Frank Shu, UC University Professor and former President of Tsing Hua Univ.

  • Growth of Ga2O3(Gd2O3) films using e-beam evaporation from Ga5Gd3O12 target – RBS studies

    Identified the essential role of Gd2O3The Gd/(Ga+Gd) ratio needs to be greater than 20%The electropositive Gd+3 may stabilize Ga+3 in the film

  • 1960 Kahng and Atalla, Bell Labs First MOSFET

    Device Scaling – Beyond 22-16 nm node:high κ, metal gates, and high mobility channel

    Moore’s Law:The number of transistors per square inch doubles every 18 months

    Shorter gate length LThinner gate dielectrics tox

    Driving force :High speedLower power consumptionHigh package density

    Oxide/semiconductor interface

    Metal gate

    High mobilitychannel

    High κ gatedielectric

    Integration of IIIV, Ge, GaN with Si

  • Si GaAs In0.53Ga0.47As

    GaN InAs InSb units

    Energy gap 1.12 1.43 0.75 3.40 0.354 0.17 eV

    Lattice constant 5.431 5.65 5.87 3.19 6.06 6.50 Å

    Electron effective

    mass0.19 0.063 0.041 0.20 0.023 0.014 -

    Electron mobility 1500 8500 14000 1300 25000 78000

    cm2 V-1 s-1

    Electron saturation velocity

    1 × 107 2 × 107 8 × 106 3 × 107 3 × 107 5 × 107 cm s-1

    Electron mean free

    path0.07 0.15 0.19 0.2 0.27 0.58 μm

  • III-V (Ge)MOSCritical Issuesand proposed

    solutions

    Charge trapping and phononsElectrical characterizations:IETS and charge pumping

    Scalability of high κon III-V

    In-situ cap of GGG with other oxides

    or metal gates

    Device fabrication-Material issues

    In-situ metal gateEtching of metals

    and oxides

    Growth of oxide/ III-V MOS – MBE , ALD

    In-situ ALD + MBE

    Theoretical modeling and simulation

    Devices with fT over 500GHz at 0.1 um

    gate length

    Device fabrication-Process integrationE-beam writing

    New mask levels

    Proposed Solutions to Challenges of III-V (Ge) MOSFET

    Thermodynamic Stability High Temp. Oxide

    +Tailored heat treatment

    Interfacial density of states- Chemical bonding

    --structuresIn-situ XPS, AFM, STM

    -Interfacial phonon

  • 18

    Enhancement-mode devices

    HEMT-like structures

    Same as conventional Si MOSFET

  • Buried Channel Transistor - HEMT

    D. –H. Kim et al., IEEE EDL, p. 830, (2008)D. –H. Kim et al., IEDM, p. 719, (2008)

    Lg = 30 nm Gm = 1.8-1.9 mS/µm

  • Surface channel InGaAs MOSFET with non-self-aligned Process

    Y. Xuan et al., IEDM, p. 371, (2008)

  • Self-aligned inversion-channel InGaAs MOSFET

    1. TiN sputtering2. PMMA coating, E-beam writing, and hard mask deposition3. Dry-etching4. S/D patterning, implantation & activation5. S/D contact region patterning, wet-etching of oxide, contact

    metal deposition, lift-off & ohmic alloying

    In0.53Ga0.47As Buffer

    MBE-Al2O3/GGOor ALD-Al2O3

    Si implanted region Si implanted region

    Source Drain

    p- In0.53Ga0.47As

    InP substrate

    TiN-GatePMMA (~300nm)Pt

  • Output & Sub-threshold Characteristics

    1. tTiN= 160nm, tAl2O3=2nm, tGGO=5nm, W/L=10/1μm

    2. Id,max=1.05 mA/µm @Vg=2V, Vd=2V

    3. gm,max=714 µS/µm @Vg=0.7V, Vd=2V

    4. Vth~0.2V, µFE=1300 cm2/V∙s (from transconductance analysis)

    Si NMOSFET90nm nodeLg~45nmId,sat~1 mA/µm

    Self-aligned inversion-channel TiN/Al2O3/GGO/In0.53Ga0.47As/InP MOSFET

  • Performance Trend

    Lg 20µm 10µm 8µm 4µm 2µm 1µm

    Id,sat(µA/µm) 60 104 140 263 506 1050

    gm,max(µS/µm) 34 56 81 152 320 714

    Estimated PerformanceFor Lg=0.5µm

    0.5µm

    ~2mA/µm

    ~1.4mS/µm

    Performance for Si 32 nm nodeId,sat = 1.5-1.6 mA/µm

    0.35 µm

    ~3mA/µm

    ~2.1mS/µm

  • ALD-Al2O3 on In0.53Ga0.47As MOSFETs

    0.0 0.5 1.0 1.5 2.00.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Vg = 0~4Vstep = +0.5V

    I d (m

    A/µm

    )

    Vd (V)

    4V

    0V-2 -1 0 1 2 3 40.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0

    30

    60

    90

    120

    I d (m

    A/µm

    )

    Vg (V)

    g m (µ

    S/µm

    )

    Vd = 2V

    Short air-exposure between ALD-Al2O3 and InGaAs Self-aligned process Id,max= 288 mA/µm @Vg= 4V, Vd= 2V gm= 93 µS/µm @Vg=1.6V, Vd=2V

    Gate length= 1µm

    H. C. Chiu et al, submitted to EDL

  • ALD-Al2O3 on In0.53Ga0.47As MOSFETs

    Low leakage current density for TiN/ALD-Al2O3/InGaAswithstanding dopant activation temp up to 750oC for 15 sec

    Gate-to-source leakage current

  • Sub-micron Gate Length ALD- Al2O3/In0.53Ga0.47As/InP MOSFET

    1 2 3 40

    200

    400

    600

    800

    0.0V

    0.5V

    1.0V

    1.5V

    2.0VVg=2.5V

    I d (µ

    A/µm

    )

    Vd (V)-1 0 1 2 3

    10-2

    100

    102

    I d (µ

    A/µm

    )

    Vg (V)

    Vd=4.0V

    Vd=0.1V

    0

    100

    200

    300

    400

    Gm

    (µS/

    µm)

    W/L= 100/0.6μm, tox= 6nm, CET ~3nm

    Id,max= 678 μA/μm @Vg= 2.5V, Vd= 4V

    gm,max= 354 μS/μm @Vg= 0.8V, Vd= 4V

    Vth= 0.35V, Ion/Ioff= 1.7×103

  • Sub-micron Gate Length ALD- Al2O3/In0.53Ga0.47As/InP MOSFET

    2009 VLSI-TSA Symposium

    1 10-0.4-0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    Vth

    V th

    (V)

    Lg (µm)100

    200

    300

    400

    S.S.

    (mV/

    dec)

    S.S.

    0.1 1 10101

    102

    103

    I d (µ

    A/µm

    )

    Lg (µm)

    101

    102

    103

    Gm

    (µS/

    µm)

    channel doping(cm-3)

    Tox (CET)[nm]

    SIC*(cm-3)

    Ta **(oC)

    Rs*** (Ω/□)

    ρc**** (Ω.cm2)

    Id, max (µA/µm)@Lg=1µm

    Gm (µS/µm)@Lg=1µm

    Ion/Ioff@Vds=2V

    S.S.(mV/dec)

    DIBL(mV/V)

    5×1016 10(5) 5×1018 650 717 1.28×10-5 164 60

  • E-mode III-V MOSFETsBenchmark

    MBE-Al2O3/GGO/In0.53Ga0.47AsLg=1µmId= 1.05 mA/μmgm= 714 μS/μmT. D. Lin et al., APL 93, 033516 (2008)

    ALD-Al2O3/In0.53Ga0.47AsLg=0.6µmId= 678 μA/μmgm= 354 μS/μm

    0.0 0.5 1.0 1.5 2.00

    400

    800

    1200 InxGa1-xAs

    ALD-Al2O3

    x=0x=0

    MBE-Al2O3/GGO

    x=0.3x=0.53

    x=0.53

    x=0.7

    x=0.7

    x=0.65

    x=0.53

    x=0.75x=0.53

    x=0

    I d,m

    ax(µ

    A/µm

    )

    0.0 0.5 1.0 1.5 2.00

    200

    400

    600

    800

    x=0 x=0x=0x=0.7

    x=0.7x=0.3

    x=0.53

    x=0.53x=0.53

    x=0.53

    InxGa1-xAs

    ALD-Al2O3x=0.75

    x=0.65

    MBE-Al2O3/GGO

    Lg (µm)

    g m(µ

    S/µm

    )

    Self-aligned

    Non-self-aligned

    HEMT-like

    MBE Lg 0.35 µm → gm 2mS/µm

    ALD Lg 0.1 µm → gm 2mS/µm

  • 29

    Key – high κ’s/InGaAs interface

    Toward Fermi-level Unpinning and have achieved it

    GGO scalability and high-temperature thermodynamic stability of GGO/InGaAs

    Energy parameters

    MOSCAPs with different work function metals

  • 30

    Key – high κ’s/InGaAs interface

    Toward Fermi-level Unpinning and have achieved it

    GGO scalability and high-temperature thermodynamic stability of GGO/InGaAs

    Energy parameters

    MOSCAPs with different work function metals

  • 31

    1.0

    0.8

    0.6

    0.4

    0.2Cap

    acita

    nce

    (µF/

    cm2 )

    -3 -2 -1 0 1 2 3Gate voltage (V)

    1.0

    0.8

    0.6

    0.4

    0.2

    Cap

    acita

    nce

    (µF/

    cm2 )

    -3 -2 -1 0 1 2 3Gate voltage (V)

    1.0

    0.8

    0.6

    0.4

    Cap

    acita

    nce

    (µF/

    cm2 )

    -3 -2 -1 0 1 2 3Gate voltage (V)

    -4 -2 0 2 40.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Frequency 1k 10k 50k 100k 500k

    Bias (V)

    Capa

    cita

    nce

    (µF/

    cm2 )

    P-type N-type25oC 150oC 150oC 25oC

    In-situ MBE-Al2O3/GGO/ n- and p-In0.2Ga0.8As

    Fermi-level movement efficiency (FLE), an "aid" to show effectiveness of passivation; FLE ~100% for perfected SiO2/SiFLE ~ 30% near mid-gap at 150oC, and much higher away from mid-gap at 25oC in the p- and n-samples

  • 32

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4Cap

    acita

    nce

    (µF/

    cm2 )

    -3 -2 -1 0 1 2 3Gate voltage (V)

    0.70.60.50.40.30.2C

    apac

    itanc

    e (µ

    F/cm

    2 )

    3210-1-2Gate voltage (V)

    Comparison between Al2O3/GGO and ALD-Al2O3n-In0.2Ga0.8As at room temperature

    Fermi-level trace

    GGO/InGaAs showed much better CV/GV (compared with that of ALD)

    NTHU sample-Al2O3(3nm)/GGO(8.5nm) on In0.2Ga0.8As

    IMEC sample –ALD Al2O3(10nm) on In0.15Ga0.85As

    Fermi-level trace

  • Fermi-Level Movement Efficiency (FLME) with Quasi-Static CV

    ( ) ( ) 1G

    FB

    V

    s G s FBoxV

    CV VC

    − = −

    ∫ψ ψ

    C. N. Berglund et al., IEEE Trans. Electron Dev. Vol. 13, 701 (1966)

    Berglund’sintegral

    theoretical CV (Dit=0) measured CV

    Capa

    citan

    ce

    Gate Bias (V)

    EC

    EV

    E i

    theroretical (Dit=0) measured

    ψ s (e

    V)Gate Bias (V)

    Berglund’s integral

  • -4 -2 0 2 40.2

    0.4

    0.6

    0.8

    1.0

    1.2

    QSCV 1 kHz 10 kHz 50 kHz 100 kHz 500 kHz

    C (µ

    F/cm

    2 )

    Gate Bias (V)

    -4 -2 0 2 4

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    QSCV 1 kHz 10 kHz 50 kHz 100 kHz 500 kHz

    C (µ

    F/cm

    2 )

    Gate Bias (V)

    -3 -2 -1 0 1 2 30.4

    0.6

    0.8

    1.0

    1.2

    Sweap Rate 50mV/1s 50mV/5s 50mV/25s 50mV/50s

    C (µ

    F/cm

    2 )

    Gate Bias (V)

    -3 -2 -1 0 1 2 3

    0.4

    0.6

    0.8

    1.0

    1.2

    Sweep Rate 50mV/1s 50mV/5s 50mV/25s 50mV/50s

    C (µ

    F/cm

    2 )

    Gate Bias (V)

    -3 -2 -1 0 1 2 3-0.20.00.20.40.60.81.01.2

    E i

    ψs (

    eV)

    EC

    Gate Bias (V)

    EV Measured Dit=0

    -3 -2 -1 0 1 2 3-0.20.00.20.40.60.81.01.2

    EC

    EV

    E i

    Measured Dit=0

    ψs (

    eV)

    Gate Bias (V)

    Al/Al2O3(3nm)/GGO(5nm)/p-In0.2Ga0.8As/GaAs

    Fermi-Level Movement Efficiency (FLME)

    Al/Al2O3(3nm)/GGO(7nm)/n-In0.2Ga0.8As/GaAs

    FLME~77%

    FLME~80%

  • CV curve at 100 Hz should not rise up.

  • 36

    GGO Unpins the In0.2Ga0.8As Fermi level

    -5 -4 -3 -2 -1 0 1 2 3 4 50.20.40.60.81.01.21.4

    0.20.40.60.81.01.21.4

    dark

    Bias (V)

    1kHz 10kHz 50kHz 100kHz 500kHzC

    apac

    itanc

    e(µF

    /cm

    2 )

    Al2O3/GGO/p-In0.2Ga0.8As/p-GaAs High k :

    GGO: 14-15Al2O3: 8

    Low leakage unpinned Fermi-level The role played by In ?

    illuminated

    -5 -4 -3 -2 -1 0 1 2 3 40.20.40.60.81.01.21.4

    0.20.40.60.81.01.21.4

    Bias (V)

    light on

    100Hz 500Hz 1kHz 10kHz 50kHz 100kHz 500kHzC

    apac

    itanc

    e(pF

    /cm

    2 )

    -6 -4 -2 0 2 4 610-10

    10-8

    10-6

    10-4

    10-10

    10-8

    10-6

    10-4

    J (A

    /cm

    2 )

    E (MV/cm)

  • 37

    -2 -1 0 1

    1

    2

    3

    4

    Bias (V)

    C/A

    (µ F

    /cm

    2 )

    50k 100k 500k

    4.5nmk ~17@100 kHz, CET=1nm

    ALD-HfO2 on In0.53Ga0.47Aswith short air exposure ~10 min

    -2 -1 0 101234

    ∆VFB~0 V

    C/A

    (µF/

    cm2 )

    Bias (V)

    Theoretical curve 1 MHz

    TiAu

    InPn-In0.53Ga0.47As

    n-In0.53Ga0.47As (buffer)ALD HfO2 (4.5 nm)

    ƒinv ∝1/ τR ∝ ni

    Unpinning Fermi-level

  • Achieving a low Dit in ALD-Al2O3 on In0.53Ga0.47As with short air exposure

    38

    10 nm

    H. C. Chiu et al., Appl. Phys. Lett., 93, p202903 (2008)

    very sharp Al2O3/InGaAs interface Fermi-level moves across the nearly

    entire bandgap high FLME of 63% near midgap

    -3 -2 -1 0 1 2 30.0

    0.2

    0.4

    0.6

    0.8

    1 kHz

    10 kHz

    100 kHz

    Quasi-static

    C (µ

    F/cm

    2 )

    Gate Bias (V)

    1000 kHz

    -3 -2 -1 0 1 2 3-0.4-0.20.00.20.40.60.8

    EC

    EV

    E i

    Measured Dit=0

    ψ s (e

    V)

    Gate Bias (V)

  • 0 10k 20k

    3x10-7

    4x10-7

    5x10-7

    6x10-7

    +0.1 V 0.0 V -0.1 V

    G p/ω

    (S·s/

    cm2 )

    Frequency (Hz)

    Dit Overestimation in Small Band-gap Semiconductors Using Conductance Method

    K. Martens et al., IEEE Trans. Electron Devices, Vol. 55, 547 (2008)

    Dit=3×1012 cm-2eV-1 extracted at 300kOverestimating Dit due to weak

    inversion at depletion region

    GeOxNy on Ge

    Dit=8.5×1012 cm-2eV-1 extracted at 300k Dit=7.0×1011 cm-2eV-1 extracted at 80k

    ALD-Al2O3 on In0.53Ga0.47As

  • Charge Pumping

    -1.0 -0.5 0.0 0.5 1.00.0

    0.4

    0.8

    1.2

    1.6 =2.5 × 1011 cm-2eV-1itD

    itD

    Vfb

    I cp (µ

    A)

    Bias (V)

    1M 900k 800k 700k 600k 500k 400k 300k 200k 100k

    Area =7.85x10-5cm-250% duty cycleTr,Tf = 100nsAmp. =1V

    VthAmp.

    4 5 6 7 8 91017

    1018101910201021

    N bt (

    #/cm

    3 )

    Tunneling distance (A)

    ALD-Al2O3

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.31011

    1012

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

    1011

    1012

    itD

    itD

    Upper Half

    Lower Half

    D it (

    eV-1cm

    -2)

    E-Ei (eV)

    ALD-Al2O3 on In0.53Ga0.47As

    A low mean Dit ~ 2.5×1011 cm-2eV-1 near midgap (±0.2eV) A Dit of ~ (2-4)×1011 cm-2eV-1 in the

    lower half of the bandgap and 1012 cm-2 eV-1 in the upper half of the bandgap A low bulk trap density ~ 7×1018 cm-3

  • 41

    Key – high κ’s/InGaAs interface

    Toward Fermi-level Unpinning and have achieved it

    GGO scalability and high-temperature thermodynamic stability of GGO/InGaAs

    Energy parameters

    MOSCAPs with different work function metals

  • 42

    Summary of samplesN-type TH622

    MBE Al2O3/GGO(10nm)/In0.2Ga0.8As TH647

    MBE Al2O3/GGO(8.5nm)/In0.2Ga0.8As TH663

    MBE Al2O3/GGO(4.5nm)/In0.2Ga0.8AsP-type TH834

    MBE Al2O3/GGO(8.5nm)/In0.2Ga0.8As TH857

    MBE Al2O3/GGO(5.0nm)/In0.2Ga0.8As TH908

    MBE Al2O3/GGO(3.0nm)/In0.2Ga0.8As

    (n)p-GaAs (buffer)

    GGO

    (n)p-In0.2Ga0.8As

    ~3nm

    2” n-GaAs

    Al2O3

    ~225nm

    ~7.5nm

  • -4 -2 0 2 41020304050607080

    1k 10k 50k 100k 500k

    Au/Al2O3(3nm)/GGO(10nm)/In0.2Ga0.8As/GaAs/B.E.

    k~15-16

    Bias (V)

    Capa

    cita

    nce(

    pF)

    -4 -2 0 2 415

    30

    45

    60

    75

    90

    1k 10k 50k 100k 500k

    Au/Al2O3(3nm)/GGO(8.5nm)/In0.2Ga0.8As/GaAs/B.E.

    Bias (V)

    Capa

    cita

    nce(

    pF)

    K~14-15

    -3 -2 -1 0 1 2 30

    20

    40

    60

    80

    100

    120

    1k 10k 50k 100k 500k

    k~14-16

    Bias (V)

    Au/Al2O3(3nm)/GGO(4.5nm)/In0.2Ga0.8As/GaAs/B.E.

    Capa

    cita

    nce(

    pF)

    -5 -4 -3 -2 -1 0 1 2 3 4 50102030405060708090

    100Pt/Al2O3(3nm)/GGO(8.5nm)/In0.2Ga0.8As/GaAs/B.E.

    1k 10k 50k 100k 500k

    Capa

    cita

    nce

    (pF)

    Voltage (V)

    k~14-16

    -5 -4 -3 -2 -1 0 1 2 30102030405060708090

    100Ni/Al2O3(3nm)/GGO(5nm)/In0.2Ga0.8As/GaAs/B.E.

    1k 10k 50k 100k 500kCa

    paci

    tanc

    e (p

    F)

    Voltage (V)

    K~15-17

    -3 -2 -1 0 1 2 30102030405060708090

    100110120130140

    Ni/Al2O3(2.5nm)/GGO(3nm)/In0.2Ga0.8As/GaAs/B.E.

    500 1k 10k 50k 100k 500k

    Capa

    cita

    nce

    (pF)

    Voltage (V)

    k~15-17

    C-V Characteristics

  • -6 -4 -2 0 2 4 6

    10-910-710-510-310-1101

    GGO-45A GGO-85A GGO-100A

    E (MV/cm) J

    (A/c

    m2 )

    Low leakage current density @Vg=Vfb+1V10-8-10-9 A/cm2 [GGO≧8.5nm]3.1×10-5 A/cm2 [GGO 4.5nm]

    -6 -4 -2 0 2 4 610-910-810-710-610-510-410-3

    GGO-85A GGO-50A GGO-30A

    J (A

    /cm

    2 )

    V (V)

    Low leakage current density @Vg=Vfb-1V~10-8-10-9 A/cm2 for various GGO thicknesses

    J-E Characteristics

  • 45

    Au gate metal (N2 8000C 10 s + FG 3750C 30 min with B.E(AuGe-Ni-Au))GGO

    thicknessGGO κvalue Vfb

    Dispersion(10k-500k)

    J@Vfb+1V(A/cm2) Dit(cm

    -2eV-1) GGO CET

    10 nm 14-15 1.1V 2.2% 1.46×10-9 1.4×1011 2.7 nm8.5 nm 14-16 1.1V 4.7% 1.78×10-9 2.6×1011 2.2nm4.5 nm 14-16 1.1V 5.4% 3.1×10-5 1.3×1011 1.2 nm

    Electrical properties of Au(Ni)/Al2O3/GGO/In0.2Ga0.8As/GaAs

    Ni gate metal (He 8500C 10 s + 3000C 30min in with B.E(TiN))GGO

    thicknessGGO κvalue Vfb

    Dispersion(10k-500k)

    J@Vfb+1V(A/cm2) Dit(cm

    -2eV-1) GGO CET

    8.5 nm 14-16 -0.9V 5.71% 8.55×10-9 1.1×1011 2.21 nm5nm 15-17 -0.9V 4.22% 2.9×10-9 1.5×1011 1.2nm3 nm 15-17 -0.9V 6.62% 4.72×10-9 1.2×1011 0.73 nm

  • 46

    GGO scalability

    tGGO(nm) 10 8.5 4.5

    CETGGO(nm) 2.7 2.2 1.2

    3 4 5 6 7 8 9 100.60.91.21.51.82.12.42.7

    CET G

    GO (n

    m)

    tGGO (nm)

    n-type p-type

    tGGO(nm) 8.5 5 3

    CETGGO(nm) 2.21 1.2 0.73

    n-type p-type

  • 47

    Key – high κ’s/InGaAs interface

    Toward Fermi-level Unpinning and have achieved it

    GGO scalability and high-temperature thermodynamic stability of GGO/InGaAs

    Energy parameters

    MOSCAPs with different work function metals

  • 153 150 147 144 141 138 135

    hν = 680 eV

    (III)

    (V)

    (VI)

    153 150 147 144 141 138 135

    250 eV

    460 eV

    680 eV

    (VI)

    153 150 147 144 141 138 135

    hν = 680 eV

    GaAs

    GaAs

    As2O3

    (II)

    (I)

    114 111 108 105 102 99

    GaAsGa2O3

    (VI)

    (V)(III)

    hν = 680 eV

    114 111 108 105 102 99

    Ga2O3

    GaAs

    (II)

    (I)

    hν = 680 eV

    448 446 444 442

    InGaAs

    In(OH)3

    In2O3

    (VI)

    (V)

    (III)

    hν = 680 eV

    448 446 444 442

    hν = 680 eV

    InGaAs

    InGaAs

    In2O3

    (II)

    (I)

    Depth profile of ALD-HfO2/In0.15Ga0.85As: SR-XPS

    (III)

    (V)

    (VI)

    Native oxide/In0.15Ga0.85As

    8nm-HfO2/In0.15Ga0.85As

    In 3d5/2 Ga 3p As 3p

    In 3d5/2 Ga 3p As 3p As 3p

    (IV)

  • arsenic oxide was removed

    Interfacial layer:Ga2O3; In2O3; In(OH)3

    Ga2O3, As2O3, In2O3

    In0.15Ga0.85As

    Ga2O3, In2O3

    ALD-Al2O3

    In0.15Ga0.85As

    Fraction of a mono-layer As2O5

    ALD-HfO2

    In0.15Ga0.85As

    Fermi level unpinning at ALD-oxide/InGaAs

    Fermi Level unpinning

    Native oxide

    Different chemical reaction for TEMAH/H2O and TMA/H2O on air-exposed InGaAs surface

    M.L.Huang, et al, APL Dec 2005; citations:53

  • 50

    Valence band offsets: determined by XPS

    InGaAsVBM

    InGaAsCL EE −

    oxideVBM

    oxideCL EE −InGaAs

    CLoxideCL EE −

    VE∆

    InxGa1-xAs

    oxide

    )()()( oxideVBMoxideCL

    InGaAsCL

    oxideCL

    InGaAsVBM

    InGaAsCLv EEEEEEE −−−+−=∆

    :InGaAsCLE core level of InGaAs

    valence level max of InGaAs

    :oxideVBME

    :InGaAsVBME

    :vE∆

    :oxideCLEvalence level maximum of oxide

    core level of oxide

    Valence band offset

    E. A. Kraut et al., PRL 44, 1620 (1980); A. Franciosi et al., Surf. Sci. Rep. 25, 1 (1996)M. L. Huang et al., APL 89, 012903 (2006)

    VBM

    CBM

    VBM

    CBM

    CL

    CL

  • 30 25 20 15 10 5 0 -5

    17.1 eV

    16.1 eV

    23.1 eV

    ~5.65 eVALD amorphous HfO2

    ALD amorphous Al2O3MBE single crystalγ-Al2O3 on Si(111)

    ~7.5 eV

    ~6.8 eV

    Norm

    alize

    d In

    tens

    ity (e

    V)

    Energy Loss (eV)

    O 1s EELS

    ~5.45 eV

    MBE amorphous (Ga2O3)(Gd2O3)

    hωp~25.0 eV

    Band-to-band transitionPlasmon Loss

    The minimum energy of band-to-band transition => Bandgap (Eg)

    Bandgap of oxide : determined by photoemission-EELS

    (Electron Energy Loss Spectroscopy)

    F. G. Bell & L. Ley, PRB 37, 8383 (1988); S. Miiyazaki, Appl. Surf. Sci. 190, 66 (2002)

    deviation: ±0.1 eV

  • 52

    HfO2/GaAs 40.36 eV -23.58 eV 14.19 eV 2.62 eV

    HfO2/In0.15Ga0.85As 40.42 eV -23.56 eV 14.19 eV 2.67 eV

    HfO2/In0.53Ga0.47As 40.57 eV -23.52 eV 14.19 eV 2.86 eV

    Energy-Band Parameters at HfO2/InGaAs

    InGaAsVBM

    InGaAsdAs EE −2/53

    oxideVBM

    oxidefHf EE −2/74

    InGaAsdAs

    oxidefHf EE 2/52/7 34 − VE∆

    0.72

    1.8

    2.86

    1.48

    2.67

    1.19

    x=0.53

    Eg(HfO2)~5.34 eV

    x=0.15HfO2/InxGa1-xAs

    ΔEc

    ΔEv

    Eg(HfO2)~5.38 eV

    ΔEc

    ΔEv

    InxGa1-xAs

    HfO2

    ΔEc

    ΔEv

    Eg

    [1] M. L. Huang et al., APL 89, (2006)

    )()()( oxideVBMoxideCL

    InGaAsCL

    oxideCL

    InGaAsVBM

    InGaAsCLv EEEEEEE −−−+−=∆

  • 53

    -4 -2 0 2 410-10

    10-810-610-410-2

    J (A

    /cm

    2 )

    EG (MV/cm)-6 -4 -2 0 2 4 610

    -10

    10-810-610-410-2

    J (A

    /cm

    2 )

    EG (MV/cm)

    J at Vfb+1V =2x10-8 A/cm2

    J at Vfb+1V =1x10-8 A/cm2

    Conduction band offsets: F-N tunneling

    8.3nm-HfO2 / In0.15Ga0.85As 7.8nm-HfO2 / In0.53Ga0.47As

    0 2 4 6 8

    -48

    -44

    -40

    ln(J

    /Eox

    2 )

    1/Eox (nm/V)

    ΔEc=1.48 eV

    (-) (+)

    (φ-_ φ+) = (Фm-χs) --- (1) S+ = -8π(2m*)1/2(φ+)3/2/3qh --- (2)S- = -8π(2m*)1/2(φ-)3/2/3qh --- (3)

    ln(JFN/Eox2) = S/Eox+ ln(C)S = -8π(2m*)1/2(φ)3/2/3qhC = q3/8πhφm*

    Фm: metal work functionχs : electron affinity of InGaAs

    2 4 6 8-48

    -44

    -40

    ln(J/E

    ox2 )

    1/Eox (nm/V)

    ΔEc=1.8 eV

    (-) (+)

    deviation : ±0.08 eV[1] T.S. Lay et al, Solid State Electron. 45, (2001)[2] Y. C. Chang, et. al. Appl. Phys. Lett, 92, 072901 (2008).

  • Discussion: Energy band parameters

    Eg(Al2O3)~6.8 eV

    ALD-Al2O3/In0.15Ga0.85As

    1.19 eV

    3.78 eV

    cE∆

    vE∆

    1.83±0.1eV

    XPS method FN tunneling

    1.6 ± 0.1 eV

    deviation : ±0.1 eV

    0.75

    1.84

    2.86

    1.591.41

    2.672.62

    1.191.42

    x=0 x=0.25 x=0.5

    Eg(HfO2)~5.45 eV

    ALD-HfO2/InxGa1-xAs

    1.66

    2.74

    1.05

    x=0.15

    cE∆

    vE∆

    0.75

    1.89

    3.86

    2.09

    3.96

    1.71

    3.67

    1.051.42Eg(Al2O3)~6.8 eV

    x=0 x=0.25 x=0.5ALD-Al2O3/InxGa1-xAs

    1.19

    3.78

    x=0.15

    cE∆

    vE∆

    1.83

    0.75 eV

    1.84 ±0.1 eV

    2.86 eV

    x=0.5

    Eg(HfO2)~5.45 eV

    ALD-HfO2/In0.5Ga0.5As

    cE∆

    vE∆

    1.8 ± 0.1 eV

    XPS method FN tunneling

  • Conclusion

    Perfecting the best atomic-scale hetero-structures and their interfaces in high κ and high mobility semiconductors

    Probing them with the most powerful analytical tools (XPS and x-ray diffraction using synchrotron radiation, in-situ XPS, and HR-TEM)

    Producing novel, high-performance electronic devices ready for beyond Si CMOS

    55

    �� Nano-electronics of high k dielectrics on high mobility channel semiconductors for key technologies beyond Si CMOS � � T. D. Lin, P. Chang, M. L. Huang, H. C. Chiu, C. A. Lin, W. H. Chang, Y. J. Lee, Y. C. Chang, and Y. H. Chang �J. Kwo and M. Hong��National Tsing Hua University, Hsinchu, Taiwan��Electron mobilities in GaAs, Si, and GeBackground leading to unpin surface Fermi level in III-V compound semiconductorsPioneering work of GaAs and InGaAs MOSFET’s using Ga2O3(Gd2O3) �at Bell Labs w/o 2 overlayers投影片編號 5投影片編號 6投影片編號 7投影片編號 8投影片編號 9Pioneer Work : Single Crystal Gd2O3 Films on GaAs投影片編號 11投影片編號 12投影片編號 13投影片編號 14投影片編號 15投影片編號 16投影片編號 17投影片編號 18Buried Channel Transistor - HEMTSurface channel InGaAs MOSFET with non-self-aligned ProcessSelf-aligned inversion-channel InGaAs MOSFET Output & Sub-threshold CharacteristicsPerformance Trend投影片編號 24投影片編號 25Sub-micron Gate Length �ALD- Al2O3/In0.53Ga0.47As/InP MOSFETSub-micron Gate Length �ALD- Al2O3/In0.53Ga0.47As/InP MOSFET投影片編號 28Key – high k’s/InGaAs interface Key – high k’s/InGaAs interface 投影片編號 31投影片編號 32Fermi-Level Movement Efficiency (FLME) �with Quasi-Static CVFermi-Level Movement Efficiency (FLME)投影片編號 35 GGO Unpins the In0.2Ga0.8As Fermi level投影片編號 37Achieving a low Dit in ALD-Al2O3 on �In0.53Ga0.47As with short air exposure投影片編號 39投影片編號 40Key – high k’s/InGaAs interface Summary of samples投影片編號 43投影片編號 44投影片編號 45GGO scalabilityKey – high k’s/InGaAs interface 投影片編號 48投影片編號 49投影片編號 50投影片編號 51投影片編號 52投影片編號 53投影片編號 54Conclusion