Min-max Theory, Willmore conjecture, and Energy of links - 0.3in...

67
Min-max Theory, Willmore conjecture, and Energy of links Andr ´ e Neves (Joint with Fernando Marques)

Transcript of Min-max Theory, Willmore conjecture, and Energy of links - 0.3in...

  • Min-max Theory, Willmore conjecture, and Energyof links

    André Neves

    (Joint with Fernando Marques)

  • Q: What is the best way of immersing a sphere in space?

    A: The one that minimizes the bending energy∫Σ

    H̄2 =∫

    Σ

    (k1 + k2

    2

    )2.

    • bending energy is conformally invariant;

    • every compact surface has∫

    ΣH̄2 ≥ 4π with equality only for round

    sphere.

  • Q: What is the best way of immersing a sphere in space?

    A: The one that minimizes the bending energy∫Σ

    H̄2 =∫

    Σ

    (k1 + k2

    2

    )2.

    • bending energy is conformally invariant;

    • every compact surface has∫

    ΣH̄2 ≥ 4π with equality only for round

    sphere.

  • What is the best way of immersing a torus in space?

    Conjecture (Willmore, ’65)For every torus Σ immersed in R3∫

    Σ

    H̄2 ≥ 2π2.

  • What is the best way of immersing a torus in space?

    Conjecture (Willmore, ’65)For every torus Σ immersed in R3∫

    Σ

    H̄2 ≥ 2π2.

  • Consider stereographic projection

    π : S3 − {north pole} −→ R3.

    • If Σ ⊂ S3 then ∫Σ

    (1 + H2) =∫π(Σ)

    H̄2.

    • the Willmore energy of Σ ⊂ S3 is defined to be

    W(Σ) =∫

    Σ

    (1 + H2).

    Willmore Conjecture - ’65Every torus Σ immersed in S3 hasW(Σ) ≥ 2π2.

  • Consider stereographic projection

    π : S3 − {north pole} −→ R3.

    • If Σ ⊂ S3 then ∫Σ

    (1 + H2) =∫π(Σ)

    H̄2.

    • the Willmore energy of Σ ⊂ S3 is defined to be

    W(Σ) =∫

    Σ

    (1 + H2).

    Willmore Conjecture - ’65Every torus Σ immersed in S3 hasW(Σ) ≥ 2π2.

  • Theorem (Marques-N., ’12)For every embedded surface Σ ⊂ S3 with genus g ≥ 1

    W(Σ) ≥ 2π2

    with equality if and only if Σ is conformal to S1(

    1√2

    )× S1

    (1√2

    ).

    Corollary AWillmore conjecture holds.

    Corollary BThe only two minimal surfaces in S3 with area ≤ 2π2 are great spheres andClifford torus.

  • Links in space

    • γ1 and γ2 two linked curves in R3.

    • lk (γ1, γ2) is the linking number

    lk = 1 lk = 3

  • Links in space

    • γ1 and γ2 two linked curves in R3.

    • lk (γ1, γ2) is the linking number

    lk = 1 lk = 3

  • Links in space

    • Möbius cross energy of a link (γ1, γ2) is

    E(γ1, γ2) =∫

    S1×S1

    |γ′1(s)||γ′2(t)||γ1(s)− γ2(t)|2

    ds dt .

    • E(γ1, γ2) is conformally invariant and

    E(γ1, γ2) ≥ 4π|lk (γ1, γ2)|

  • Links in space

    Q: What is the best way of immersing a non-trivial link (γ1, γ2) in R3?

    A: The one that minimizes the Möbius energy.

    Conjecture (Freedman-He-Wang, ’94)

    If lk (γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • If true, every non-trivial link has E(γ1, γ2) ≥ 2π2.

  • Links in space

    Q: What is the best way of immersing a non-trivial link (γ1, γ2) in R3?

    A: The one that minimizes the Möbius energy.

    Conjecture (Freedman-He-Wang, ’94)

    If lk (γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • If true, every non-trivial link has E(γ1, γ2) ≥ 2π2.

  • Theorem (Agol-Marques-N., ’12)

    If lk (γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    If equality then (γ1, γ2) is conformal to the standard Hopf link in S3

    β1(t) = (cos t , sin t ,0,0) and β2(s) = (0,0, cos s, sin s).

  • Theorem (Agol-Marques-N., ’12)

    If lk (γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    If equality then (γ1, γ2) is conformal to the standard Hopf link in S3

    β1(t) = (cos t , sin t ,0,0) and β2(s) = (0,0, cos s, sin s).

  • Partial results...• (Willmore ’71, Shioama-Takagi ’70): Conjecture is true for tubes of

    constant radius around a space curve.

    • (Langevin-Rosenberg ’76): If Σ ⊂ R3 is a knotted torus thenW(Σ) ≥ 8π.

    • (Chen, ’83): Conjecture is true for flat tori in 3-sphere.

    • (Langer-Singer ’84): Conjecture is true for tori of revolution.

  • Partial results...• (Willmore ’71, Shioama-Takagi ’70): Conjecture is true for tubes of

    constant radius around a space curve.

    • (Langevin-Rosenberg ’76): If Σ ⊂ R3 is a knotted torus thenW(Σ) ≥ 8π.

    • (Chen, ’83): Conjecture is true for flat tori in 3-sphere.

    • (Langer-Singer ’84): Conjecture is true for tori of revolution.

  • Partial results...• (Willmore ’71, Shioama-Takagi ’70): Conjecture is true for tubes of

    constant radius around a space curve.

    • (Langevin-Rosenberg ’76): If Σ ⊂ R3 is a knotted torus thenW(Σ) ≥ 8π.

    • (Chen, ’83): Conjecture is true for flat tori in 3-sphere.

    • (Langer-Singer ’84): Conjecture is true for tori of revolution.

  • Partial results...• (Willmore ’71, Shioama-Takagi ’70): Conjecture is true for tubes of

    constant radius around a space curve.

    • (Langevin-Rosenberg ’76): If Σ ⊂ R3 is a knotted torus thenW(Σ) ≥ 8π.

    • (Chen, ’83): Conjecture is true for flat tori in 3-sphere.

    • (Langer-Singer ’84): Conjecture is true for tori of revolution.

  • Partial results...

    • (Li-Yau ’82): If Σ ⊂ S3 covers a point k times thenW(Σ) ≥ 4πk . Thus

    Σ not embedded =⇒ W(Σ) ≥ 8π.

    • (Li-Yau ’82): Conjecture is true for a set of conformal classes whichcontains the conformal class of the Clifford torus.

    • (Montiel-Ros ’86):Conjecture is true for a larger set of conformal classesthan the set given by Li-Yau.

  • Partial results...

    • (Li-Yau ’82): If Σ ⊂ S3 covers a point k times thenW(Σ) ≥ 4πk . Thus

    Σ not embedded =⇒ W(Σ) ≥ 8π.

    • (Li-Yau ’82): Conjecture is true for a set of conformal classes whichcontains the conformal class of the Clifford torus.

    • (Montiel-Ros ’86):Conjecture is true for a larger set of conformal classesthan the set given by Li-Yau.

  • Partial results...

    • (Li-Yau ’82): If Σ ⊂ S3 covers a point k times thenW(Σ) ≥ 4πk . Thus

    Σ not embedded =⇒ W(Σ) ≥ 8π.

    • (Li-Yau ’82): Conjecture is true for a set of conformal classes whichcontains the conformal class of the Clifford torus.

    • (Montiel-Ros ’86):Conjecture is true for a larger set of conformal classesthan the set given by Li-Yau.

  • Partial results...

    (Benisom-Mutz ’91)Conjecture is true for observed toroidal vesicles in some cells.

  • Partial results...

    • (Simon ’93): There is a torus which has least Willmore energy among alltori.

    • (Ros ’99, Topping ’00): Conjecture is true for tori symmetric under theantipodal map.

    • (Ros ’00): Conjecture is true for tori symmetric with respect to a point.

  • Partial results...

    • (Simon ’93): There is a torus which has least Willmore energy among alltori.

    • (Ros ’99, Topping ’00): Conjecture is true for tori symmetric under theantipodal map.

    • (Ros ’00): Conjecture is true for tori symmetric with respect to a point.

  • Partial results...

    • (Simon ’93): There is a torus which has least Willmore energy among alltori.

    • (Ros ’99, Topping ’00): Conjecture is true for tori symmetric under theantipodal map.

    • (Ros ’00): Conjecture is true for tori symmetric with respect to a point.

  • Other results...

    Theorem (Bryant ’84)

    Classified immersions of Willmore spheres.

  • Other results...

    Theorem (Pinkall ’85)

    Found many embedded Willmore tori which are not conformal to minimalsurface.

  • Min-max Theory

    How to find critical points for area functional?

    • Z2(S3) = oriented surfaces in S3.

    • φ : Ik → Z2(S3) continuous, where Ik = k -cube.• [φ] = homotopy class relative to the boundary (i.e. φ|∂Ik is fixed).• L([φ]) = infψ∈[φ] maxx∈Ik area (ψ(x)).

  • Min-max Theory

    How to find critical points for area functional?

    • Z2(S3) = oriented surfaces in S3.• φ : Ik → Z2(S3) continuous, where Ik = k -cube.

    • [φ] = homotopy class relative to the boundary (i.e. φ|∂Ik is fixed).• L([φ]) = infψ∈[φ] maxx∈Ik area (ψ(x)).

  • Min-max Theory

    How to find critical points for area functional?

    • Z2(S3) = oriented surfaces in S3.• φ : Ik → Z2(S3) continuous, where Ik = k -cube.• [φ] = homotopy class relative to the boundary (i.e. φ|∂Ik is fixed).

    • L([φ]) = infψ∈[φ] maxx∈Ik area (ψ(x)).

  • Min-max Theory

    How to find critical points for area functional?

    • Z2(S3) = oriented surfaces in S3.• φ : Ik → Z2(S3) continuous, where Ik = k -cube.• [φ] = homotopy class relative to the boundary (i.e. φ|∂Ik is fixed).• L([φ]) = infψ∈[φ] maxx∈Ik area (ψ(x)).

  • Min-max Theory

    Theorem (Pitts, ’81)Assume

    L([φ]) = infψ∈[φ]

    maxx∈Ik

    area (ψ(x)) > maxx∈∂Ik

    area (φ(x)),

    (this means [φ] 6= 0 ∈ πk (Z2(S3), φ|∂Ik ).)

    There is Σ ⊂ S3 smooth embedded minimal surface (with multiplicities) so that

    L([φ]) = area(Σ).

    • Conjecture: index(Σ) ≤ k .

  • Min-max Theory

    Theorem (Pitts, ’81)Assume

    L([φ]) = infψ∈[φ]

    maxx∈Ik

    area (ψ(x)) > maxx∈∂Ik

    area (φ(x)),

    (this means [φ] 6= 0 ∈ πk (Z2(S3), φ|∂Ik ).)

    There is Σ ⊂ S3 smooth embedded minimal surface (with multiplicities) so that

    L([φ]) = area(Σ).

    • Conjecture: index(Σ) ≤ k .

  • Min-max Theory

    Theorem (Urbano, ’90)Σ ⊂ S3 compact embedded minimal surface with index(Σ) ≤ 5. Then either• Σ is a great sphere (index(Σ) = 1 and area(Σ) = 4π), or• Σ is the Clifford torus (index(Σ) = 5 and area(Σ) = 2π2).

    (Almgren, ’62) The sweepout

    φ0(t) = {x4 = 2t − 1} ∩ S3, 0 ≤ t ≤ 1,

    has L([φ0]) > 0 and so L([φ0]) = 4π.

  • Min-max Theory

    Theorem (Urbano, ’90)Σ ⊂ S3 compact embedded minimal surface with index(Σ) ≤ 5. Then either• Σ is a great sphere (index(Σ) = 1 and area(Σ) = 4π), or• Σ is the Clifford torus (index(Σ) = 5 and area(Σ) = 2π2).

    (Almgren, ’62) The sweepout

    φ0(t) = {x4 = 2t − 1} ∩ S3, 0 ≤ t ≤ 1,

    has L([φ0]) > 0 and so L([φ0]) = 4π.

  • Min-max Theory

    • T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory• T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory• T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;

    2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory• T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;

    3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory• T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory• T = {oriented great spheres} ≈ S3

    • R = {oriented round spheres} ≈ S3 × [0, π]

    Theorem (Marques-N.)Consider φ : I5 → Z2(S3) continuous with

    1 φ(I4 × {0}) = φ(I4 × {1}) = 0;2 φ(∂I4 × I) ⊂ R and for x ∈ ∂I4, φ(x , t) ∈ T ⇐⇒ t = 1/2;3 the sweepout t 7→ φ(1/2,1/2,1/2,1/2,1/2, t) is non-trivial.

    If φ : ∂I4 × {1/2} ≈ S3 → T ≈ S3 has non-zero degree then

    L([φ]) > 4π = maxx∈∂I5

    area(φ(x)).

  • Min-max Theory

    CorollaryFor φ as in previous theorem, maxx∈I5 area(φ(x)) ≥ 2π2.

    Idea:L([φ]) > max

    x∈∂I5area(φ(x)) = 4π

    (Pitts’ Thm) =⇒ ∃Σ minimal: L([φ]) = area(Σ) > 4π and index(Σ) ≤ 5

    (Urbano’s Thm) =⇒ Σ = Clifford torus =⇒ maxx∈I5

    area(φ(x)) ≥ L([φ]) = 2π2.

  • Min-max Theory

    CorollaryFor φ as in previous theorem, maxx∈I5 area(φ(x)) ≥ 2π2.

    Idea:L([φ]) > max

    x∈∂I5area(φ(x)) = 4π

    (Pitts’ Thm) =⇒ ∃Σ minimal: L([φ]) = area(Σ) > 4π and index(Σ) ≤ 5

    (Urbano’s Thm) =⇒ Σ = Clifford torus =⇒ maxx∈I5

    area(φ(x)) ≥ L([φ]) = 2π2.

  • Min-max Theory

    CorollaryFor φ as in previous theorem, maxx∈I5 area(φ(x)) ≥ 2π2.

    Idea:L([φ]) > max

    x∈∂I5area(φ(x)) = 4π

    (Pitts’ Thm) =⇒ ∃Σ minimal: L([φ]) = area(Σ) > 4π and index(Σ) ≤ 5

    (Urbano’s Thm) =⇒ Σ = Clifford torus =⇒ maxx∈I5

    area(φ(x)) ≥ L([φ]) = 2π2.

  • Min-max Theory

    CorollaryFor φ as in previous theorem, maxx∈I5 area(φ(x)) ≥ 2π2.

    Idea:L([φ]) > max

    x∈∂I5area(φ(x)) = 4π

    (Pitts’ Thm) =⇒ ∃Σ minimal: L([φ]) = area(Σ) > 4π and index(Σ) ≤ 5

    (Urbano’s Thm) =⇒ Σ = Clifford torus =⇒ maxx∈I5

    area(φ(x)) ≥ L([φ]) = 2π2.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].

    • Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)ψ ◦ c non-trivial sweepout with max

    t∈Iarea (ψ ◦ c(t)) ≤ max

    x∈Ikarea (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].• Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)ψ ◦ c non-trivial sweepout with max

    t∈Iarea (ψ ◦ c(t)) ≤ max

    x∈Ikarea (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].• Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)ψ ◦ c non-trivial sweepout with max

    t∈Iarea (ψ ◦ c(t)) ≤ max

    x∈Ikarea (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].• Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)ψ ◦ c non-trivial sweepout with max

    t∈Iarea (ψ ◦ c(t)) ≤ max

    x∈Ikarea (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].• Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)

    ψ ◦ c non-trivial sweepout with maxt∈I

    area (ψ ◦ c(t)) ≤ maxx∈Ik

    area (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Sketch of proof of Theorem:

    • Assume L([φ]) = 4π = maxx∈Ik area (ψ(x)) for some ψ ∈ [φ].• Set K = ψ−1(T ), where ∂K ⊂ ∂I4 × {1/2}.

    (A) [∂K ] = [∂I4 × {1/2}] in H3(∂I4 × {1/2},Z)

    φ = ψ on ∂K and ψ : K → T ≈ S3

    =⇒ degree(φ|∂I4×{1/2}) = degree(ψ|∂K ) = 0

    (B) [∂K ] = 0 in H3(∂I4 × {1/2},Z)ψ ◦ c non-trivial sweepout with max

    t∈Iarea (ψ ◦ c(t)) ≤ max

    x∈Ikarea (ψ(x)) = 4π

    =⇒ ψ ◦ c(I) ∩ T 6= ∅ =⇒ c(I) ∩ K 6= ∅.

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)

    3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!

    6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Marques-N.)If Σ ⊂ S3 has positive genus thenW(Σ) ≥ 2π2.

    1 Given v ∈ B4 consider Fv ∈ Conf (S3), x 7→ 1−|v |2

    |x−v |2 (x − v)− v

    2 C : B4 × [−π, π]→ Z2(S3), (v , t) 7→ surface at distance t from Fv (Σ)3 (Ros, 99) area(C(v , t)) ≤ W(C(v ,0)) =W(Fv (Σ)) =W(Σ)

    4 Reparametrize C to obtain φ : B4 × [−π, π]→ Z2(S3) continuous with

    • image(φ) = image(C);• φ(S3 × [−π, π]) ⊂ R and φ(x , t) ∈ T ⇐⇒ t = 0;• t 7→ φ(0, t), π ≤ t ≤ π, is non-trivial sweepout

    5 degree(φ|S3×{0}) = genus of Σ!6 Corollary to our Min-max Thm can be applied and so

    2π2 ≤ max(v ,t)∈B4×[−π,π]

    area(φ(x)) = max(v ,t)∈B4×[−π,π]

    area(C(v , t)) ≤ W(Σ)

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).

    • Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).

    3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).

  • Theorem (Agol-Marques-N.)If (γ1, γ2) link in S3 has lk(γ1, γ2) = ±1, then E(γ1, γ2) ≥ 2π2.

    • Given (σ1, σ2) ⊂ R4 consider G(σ1, σ2) : S1 × S1 → S3

    G(γ1, γ2)(s, t) =(σ1(s)− σ2(t))|σ1(s)− σ2(t)|

    .

    • area(G(σ1, σ2)) ≤ E(γ1, γ2).• Given v ∈ B4, Fv (x) = x−v|x−v |2 ∈ Conf (R

    4). Fv (B1(0)) = Br(v)(c(v)).

    1 φ : B4 × [0,+∞]→ Z2(S3),

    φ(v , λ) = G(Fv (γ1), λ(Fv (γ2)− c(v)) + c(v)).

    2 area(φ(v , λ)) ≤ E(φ(v ,1)) = E(Fv (γ1),Fv (γ2)) = E(γ1, γ2).3 Given v ∈ S3,

    φ(v ,1) = lk(γ1, γ2)∂Bπ/2(−v) =⇒ degree(φ|S3×{1}) = lk(γ1, γ2) 6= 0

    4 Can apply our Min-max Thm to conclude

    2π2 ≤ max(v ,t)∈B4×[0,+∞] area(φ(v , t)) ≤ E(γ1, γ2).