Lyman- α Galaxies at High Redshift

18
Lyman-α Galaxies at High Redshift James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily Landes, Hy Spinrad, Dan Stern, JunXian Wang, and Chun Xu

description

Lyman- α Galaxies at High Redshift. James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily Landes, Hy Spinrad, Dan Stern, JunXian Wang, and Chun Xu. Lyman α as a Signpost of Primordial Galaxies. - PowerPoint PPT Presentation

Transcript of Lyman- α Galaxies at High Redshift

Page 1: Lyman- α  Galaxies at High Redshift

Lyman-α Galaxies at High Redshift

James E. Rhoads

(Space Telescope Science Institute)with

Sangeeta Malhotra,

Steve Dawson, Arjun Dey, Buell Jannuzi, Emily Landes, Hy Spinrad, Dan Stern, JunXian Wang,

and Chun Xu

Page 2: Lyman- α  Galaxies at High Redshift

Lyman α as a Signpost of Primordial Galaxies

We are looking for the first galaxies to form from primordial gas. Such objects should have…

• Young stars, with high ultraviolet luminosities.• Considerable amounts of gas.• Very low abundances of heavy elements, implying

– Stars that are hotter than “normal” (for fixed mass);

– Low dust abundances.

Page 3: Lyman- α  Galaxies at High Redshift

Lyman α Line Emission

• Ionizing flux + gas → 2 Lyman α photons for every 3 ionizing photons absorbed by hydrogen.

• In principle, up to 6-7% of a young galaxy’s luminosity may emerge in the Lyman α line (for a Salpeter IMF).

Page 4: Lyman- α  Galaxies at High Redshift

The Narrowband Search Method

• We take pictures of a large area of sky in both broad and narrow filters.

• Emission line sources appear bright in narrow filters (demand 5σ).

• The blue “veto filter” eliminates foreground emission line objects (demand < 2σ).

Page 5: Lyman- α  Galaxies at High Redshift

Windows for Narrowband Surveys

Red lines mark our survey filter wavelengths.

Line searches are highly efficient in far red!

Page 6: Lyman- α  Galaxies at High Redshift

The Large Area Lyman Alpha Survey (LALA): an Overview

z

Ω; Volume Sensitivity Candidates,

Spectroscopic Success rate

4.5 1.4x106 Mpc3

(1/2 in Bootes)

1.7x10-17 ergs/s/cm2 350; > 70%

5.7 6 x105 Mpc3

(1/3 in Bootes)

1x10-17 ergs/s/cm2 ~50; ~ 70%

6.6 1.5x105 Mpc3

(all in Bootes)

2x10-17 ergs/s/cm2 3; 1 of 3 confirmed.

z=4.5: Rhoads et al 2000, Malhotra & Rhoads 2002, Dawson et al 2004 in prep;

z=5.7: Rhoads & Malhotra 2001, Rhoads et al 2003, Wang et al 2004 in prep.

z=6.5: Rhoads et al 2004

Page 7: Lyman- α  Galaxies at High Redshift

Physical Nature of Ly-α Galaxies

These are young star forming galaxies:• High equivalent widths require youth, plus either

low metallicity or top-heavy IMF (Malhotra & Rhoads 2002)

• AGN are ruled out by a combination of X-ray observations (see JunXian Wang’s talk [48.14] in this session) and optical spectroscopy (see Steve Dawson’s talk [48.04] in this session).

Page 8: Lyman- α  Galaxies at High Redshift

Candidate z=6.5 LALA galaxies

Ic (NDWFS) z’SDSS NB918

All data from NOAO 4m telescopes; NB918 stack is 24 hours’ integration.

Page 9: Lyman- α  Galaxies at High Redshift

LALA J142442.24+353400.2 at z=6.535

• Gemini spectrum shows an Asymmetric line and no continuum.

• Nod and shuffle helps eliminate the possibility of other lines if [OIII] (5007)

(Rhoads et al. 2004; Gemini spectrum reduced by Chun Xu.)

Page 10: Lyman- α  Galaxies at High Redshift

Physical properties of this galaxy

• Line luminosity 1043 erg s-1.• Star formation rate: 11 Msun / year

– Based on Lyman-α line + Kennicutt IMF + Case B recombination… Some modelling uncertainty.

• Equivalent width > 530Å observer frame (2σ lower bound from photometry)– Rest frame > 70 Å (naively)– Boosting z’ flux to account for IGM absorption under

Madau’s (1995) prescription gives > 40Å

• Spatially unresolved in 1” seeing < 6 kpc.

Page 11: Lyman- α  Galaxies at High Redshift

“May you live in interesting times…”

• The z = 6.5 universe was just 6% of its present age.• Moreover, this precedes the redshift of the SDSS

quasars with Gunn-Peterson troughs.• Thus the 9200Å window affords a view of late

reionization.

Page 12: Lyman- α  Galaxies at High Redshift

The Lyman-α ReionizationTest

To

Observer

Ionized IGM

Young starburst

Lyman α photons

Continuum Photons

Page 13: Lyman- α  Galaxies at High Redshift

The Lyman-α Reionization Test

To

Observer

Neutral IGM

Young starburst

Lyman α photons

Continuum Photons

(Miralda-Escude 1998; Miralda-Escude & Rees 1998;

Haiman & Spaans 1999; Loeb & Rybicki 1999)

Page 14: Lyman- α  Galaxies at High Redshift

Constraining Reionization with LALA

• Lyman α emitters at z=5.7 and 6.5 suggest zre > 6.5.

(Rhoads & Malhotra 2001; ApJ Lett 563, L5; Hu et al 2002; Rhoads et al 2003; Rhoads

et al 2004)

• Large equiv. width of the LALA object line attenuation factor is a few at most.

Figure: z=5.7 Ly-α sources from Rhoads et al 2003

Page 15: Lyman- α  Galaxies at High Redshift

Charting ReionizationCurrent evidence: Combine the Lyman α and Gunn-Peterson

tests so far to study the evolution of the mass avgeraged neutral fraction, x:

There is no contradiction between the GP effect at z=6.2 and the Ly α at z=6.56.(Figure from Rhoads et al 2003)

Page 16: Lyman- α  Galaxies at High Redshift

Lyman α Test Details

• HII regions: R>1.2 pMpc line center τ0< 1.– Residual neutrals in HII region matter.

• τ < τ0 in the red wing of lines (Haiman 2002)• Evolution affects galaxy counts… LBG

comparison samples could resolve this.• Gas motions alter Ly-α radiative transfer (Santos

2003).• Bottom line: Factors of ~ 3 reduction in Ly-α

luminosity are unavoidable in neutral universe. Reduction larger in many models but not all.

Page 17: Lyman- α  Galaxies at High Redshift

Star Formation and Metal Production

• Using LF constraint from HCM 6a ~3e-2 Msun/yr/Mpc3 star formation, and ~ 200 Msun/Myr/Mpc3 of metal production… comparable to z ~ 4 numbers from UV continuum!

• Using instead lens+blank slit data of Santos et al could reduce both numbers by a factor ~ 30.

• Compare SFRD estimates of 5.2e-4 (Kodaira et al, z=6.5 Ly-α sample); 4.6e-4 (Stanway et al, z ~ 6 LBG sample); neither integrates a LF much below the observed limit.

• The usual conclusion: More good data wanted!

Page 18: Lyman- α  Galaxies at High Redshift

Summary• Lyman-α provides an efficient way of finding

young galaxies at high redshift.• These galaxies afford a new probe of reionization,

complementing the Gunn-Peterson test.• Ly-α from LALA z=6.535 galaxy requires either a

largely ionized IGM, or an intrinsic redshift of the line relative to systemic velocity.

• Remaining uncertainties in Lyman-α reionization test can be overcome using statistical samples.