LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL...

24
LT1498/LT1499 14989fg 1 TYPICAL APPLICATION DESCRIPTION 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps The LT ® 1498/LT1499 are dual/quad, rail-to-rail input and output precision C-Load™ op amps with a 10MHz gain- bandwidth product and a 6V/μs slew rate. The LT1498/LT1499 are designed to maximize input dynamic range by delivering precision performance over the full supply voltage. Using a patented technique, both input stages of the LT1498/LT1499 are trimmed, one at the negative supply and the other at the positive supply. The resulting guaranteed common mode rejection is much better than other rail-to-rail input op amps. When used as a unity-gain buffer in front of single supply 12-bit A-to-D converters, the LT1498/LT1499 are guaranteed to add less than 1LSB of error even in single 3V supply systems. With 110dB of supply rejection, the LT1498/LT1499 main- tain their performance over a supply range of 2.2V to 36V and are specified for 3V, 5V and ±15V supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output. These op amps remain stable while driving capacitive loads up to 10,000pF. The LT1498 is available with the standard dual op amp configuration in 8-pin PDIP and SO packaging. The LT1499 features the standard quad op amp configuration and is available in a 14-pin plastic SO package. These devices can be used as plug-in replacements for many standard op amps to improve input/output range and precision. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. FEATURES APPLICATIONS n Rail-to-Rail Input and Output n 475μV Max V OS from V + to V n Gain-Bandwidth Product: 10MHz n Slew Rate: 6V/μs n Low Supply Current per Amplifier: 1.7mA n Input Offset Current: 65nA Max n Input Bias Current: 650nA Max n Open-Loop Gain: 1000V/mV Min n Low Input Noise Voltage: 12nV/√Hz Typ n Wide Supply Range: 2.2V to ±15V n Large Output Drive Current: 30mA n Stable for Capacitive Loads Up to 10,000pF n Dual in 8-Pin PDIP and SO Package n Quad in Narrow 14-Pin SO n Driving A-to-D Converters n Active Filters n Rail-to-Rail Buffer Amplifiers n Low Voltage Signal Processing n Battery-Powered Systems Frequency Response Single Supply 100kHz 4th Order Butterworth Filter + 1/2 LT1498 6.81k V IN V + /2 V + V OUT 1498 TA01 330pF 11.3k 6.81k + 1/2 LT1498 5.23k 47pF 1000pF 10.2k 5.23k 100pF FREQUENCY (Hz) 100 GAIN (dB) –50 –30 –10 10 1M 1498 TA02 –70 –90 –60 –40 –20 0 –80 –100 –110 1k 10k 100k 10M V IN = 2.7V P-P V + = 3V

Transcript of LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL...

Page 1: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

1

TYPICAL APPLICATION

DESCRIPTION

10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output

Precision C-Load Op Amps

The LT®1498/LT1499 are dual/quad, rail-to-rail input and output precision C-Load™ op amps with a 10MHz gain-bandwidth product and a 6V/μs slew rate.

The LT1498/LT1499 are designed to maximize input dynamic range by delivering precision performance over the full supply voltage. Using a patented technique, both input stages of the LT1498/LT1499 are trimmed, one at the negative supply and the other at the positive supply. The resulting guaranteed common mode rejection is much better than other rail-to-rail input op amps. When used as a unity-gain buffer in front of single supply 12-bit A-to-D converters, the LT1498/LT1499 are guaranteed to add less than 1LSB of error even in single 3V supply systems.

With 110dB of supply rejection, the LT1498/LT1499 main-tain their performance over a supply range of 2.2V to 36V and are specifi ed for 3V, 5V and ±15V supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output. These op amps remain stable while driving capacitive loads up to 10,000pF.

The LT1498 is available with the standard dual op amp confi guration in 8-pin PDIP and SO packaging. The LT1499 features the standard quad op amp confi guration and is available in a 14-pin plastic SO package. These devices can be used as plug-in replacements for many standard op amps to improve input/output range and precision.

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

FEATURES

APPLICATIONS

n Rail-to-Rail Input and Outputn 475μV Max VOS from V+ to V–

n Gain-Bandwidth Product: 10MHzn Slew Rate: 6V/μsn Low Supply Current per Amplifi er: 1.7mAn Input Offset Current: 65nA Maxn Input Bias Current: 650nA Maxn Open-Loop Gain: 1000V/mV Minn Low Input Noise Voltage: 12nV/√Hz Typn Wide Supply Range: 2.2V to ±15Vn Large Output Drive Current: 30mAn Stable for Capacitive Loads Up to 10,000pFn Dual in 8-Pin PDIP and SO Packagen Quad in Narrow 14-Pin SO

n Driving A-to-D Convertersn Active Filtersn Rail-to-Rail Buffer Amplifi ersn Low Voltage Signal Processingn Battery-Powered Systems

Frequency Response

Single Supply 100kHz 4th Order Butterworth Filter

+1/2 LT1498

6.81k

VIN

V+/2

V+

VOUT

1498 TA01

330pF

11.3k6.81k

+1/2 LT1498

5.23k 47pF

1000pF

10.2k5.23k

100pF

FREQUENCY (Hz)

100

GA

IN (

dB

)

–50

–30

–10

10

1M

1498 TA02

–70

–90

–60

–40

–20

0

–80

–100

–1101k 10k 100k 10M

VIN = 2.7VP-P

V+ = 3V

Page 2: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

2

ABSOLUTE MAXIMUM RATINGSTotal Supply Voltage (V+ to V–) .................................36VInput Current ........................................................ ±10mAOutput Short-Circuit Duration (Note 2) .........ContinuousOperating Temperature Range

LT1498/LT1499 ....................................–40°C to 85°CLT1498H/LT1499H ............................. –40°C to 125°CLT1498MP ......................................... –55°C to 125°C

(Note 1)

PIN CONFIGURATION

ORDER INFORMATION

Specifi ed Temperature Range (Note 4)LT1498/LT1499 ....................................–40°C to 85°CLT1498H/LT1499H ............................. –40°C to 125°CLT1498MP ......................................... –55°C to 125°C

Junction Temperature ........................................... 150°CStorage Temperature Range .................. –65°C to 150°CLead Temperature (Soldering, 10 sec)................... 300°C

1

2

3

4

8

7

6

5

TOP VIEW

OUT A

–IN A

+IN A

V–

V+

OUT B

–IN B

+IN B

N8 PACKAGE8-LEAD PLASTIC DIP

A

B

TJMAX = 150°C, θJA = 130°C/W

1

2

3

4

8

7

6

5

TOP VIEW

V+

OUT B

–IN B

+IN B

OUT A

–IN A

+IN A

V–

S8 PACKAGE8-LEAD PLASTIC SO

A

B

TJMAX = 150°C, θJA = 130°C/W

TOP VIEW

S PACKAGE14-LEAD PLASTIC SO

1

2

3

4

5

6

7

14

13

12

11

10

8

8

OUTA

–IN A

+IN A

V+

+IN B

–IN B

OUT B

OUT D

–IN D

+IN D

V–

+IN C

–IN C

OUT C

A D

B C

TJMAX = 150°C, θJA = 150°C/W

LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE

LT1498CN8#PBF LT1498CN8#TRPBF LT1498CN8 8-Lead Plastic PDIP 0°C to 70°C

LT1498CS8#PBF LT1498CS8#TRPBF 1498 8-Lead Plastic SO 0°C to 70°C

LT1498IN8#PBF LT1498IN8#TRPBF LT1498IN8 8-Lead Plastic PDIP –40°C to 85°C

LT1498IS8#PBF LT1498IS8#TRPBF 1498I 8-Lead Plastic SO –40°C to 85°C

LT1498HS8#PBF LT1498HS8#TRPBF 1498H 8-Lead Plastic SO –40°C to 125°C

LT1498MPS8#PBF LT1498MPS8#TRPBF 1498MP 8-Lead Plastic SO –55°C to 125°C

LT1499CS#PBF LT1499CS#TRPBF LT1499CS 14-Lead Plastic SO 0°C to 70°C

LT1499IS#PBF LT1499IS#TRPBF LT1499IS 14-Lead Plastic SO –40°C to 85°C

LT1499HS#PBF LT1499HS#TRPBF LT1499HS 14-Lead Plastic SO –40°C to 125°C

Consult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container.

Consult LTC Marketing for information on non-standard lead based fi nish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifi cations, go to: http://www.linear.com/tapeandreel/

Page 3: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

3

ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V–150150

475475

μVμV

ΔVOS Input Offset Voltage Shift VCM = V– to V+ 150 425 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V+, V– (Note 5) 200 750 μV

IB Input Bias Current VCM = V+

VCM = V–0

–650250–250

6500

nAnA

ΔIB Input Bias Current Shift VCM = V– to V+ 500 1300 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– (Note 5)

0–100

10–10

1000

nAnA

IOS Input Offset Current VCM = V+

VCM = V–55

6565

nAnA

ΔIOS Input Offset Current Shift VCM = V– to V+ 10 130 nA

Input Noise Voltage 0.1Hz to 10Hz 400 nVP-P

en Input Noise Voltage Density f = 1kHz 12 nV/√Hz

in Input Noise Current Density f = 1kHz 0.3 pA/√Hz

CIN Input Capacitance 5 pF

AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10kVS = 3V, VO = 75mV to 2.8V, RL = 10k

600500

38002000

V/mVV/mV

CMRR Common Mode Rejection Ratio VS = 5V, VCM = V– to V+

VS = 3V, VCM = V– to V+8176

9086

dBdB

CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V– to V+

VS = 3V, VCM = V– to V+7570

9186

dBdB

PSRR Power Supply Rejection Ratio VS = 2.2V to 12V, VCM = VO = 0.5V 88 105 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = 2.2V to 12V, VCM = VO = 0.5V 82 103 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 2.5mA

143590

3070

200

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 2.5mA

2.550

140

10100250

mVmVmV

ISC Short-Circuit Current VS = 5VVS = 3V

±12.5±12.0

±24±19

mAmA

IS Supply Current per Amplifi er 1.7 2.2 mA

GBW Gain-Bandwidth Product (Note 7) 6.8 10.5 MHz

SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4VVS = 3V, AV = –1, RL = Open

2.62.3

4.54.0

V/μsV/μs

Page 4: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

4

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range 0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V– + 0.1Vl

l

175175

650650

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+

l

l

0.51.5

2.54.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.1V to V+ l 170 600 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.1V, V+ (Note 5) l 200 900 μV

IB Input Bias Current VCM = V+

VCM = V– + 0.1Vl

l

0–780

275–275

7800

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.1V to V+ l 550 1560 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– + 0.1V (Note 5)

l

l

0–170

15–15

1700

nAnA

IOS Input Offset Current VCM = V+

VCM = V– + 0.1Vl

l

1010

8585

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.1V to V+ l 20 170 nA

AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10kVS = 3V, VO = 75mV to 2.8V, RL = 10k

l

l

500400

25002000

V/mVV/mV

CMRR Common Mode Rejection Ratio VS = 5V, VCM = V– + 0.1V to V+

VS = 3V, VCM = V– + 0.1V to V+l

l

7873

8985

dBdB

CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V– + 0.1V to V+ VS = 3V, VCM = V– + 0.1V to V+

l

l

7469

9086

dBdB

PSRR Power Supply Rejection Ratio VS = 2.3V to 12V, VCM = VO = 0.5V l 86 102 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = 2.3V to 12V, VCM = VO = 0.5V l 80 102 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 2.5mA

l

l

l

1740110

3580220

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 2.5mA

l

l

l

3.555160

15120300

mVmVmV

ISC Short-Circuit Current VS = 5VVS = 3V

l

l

±12±10

±23±20

mAmA

IS Supply Current per Amplifi er l 1.9 2.6 mA

GBW Gain-Bandwidth Product (Note 7) l 6.1 9 MHz

SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4VVS = 3V, AV = –1, RL = Open

l

l

2.52.2

4.03.5

V/μsV/μs

Page 5: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

5

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range –40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V– + 0.1Vl

l

250250

750750

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+

l

l

0.51.5

2.54.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.1V to V+ l 250 650 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.1V, V+ (Note 5) l 300 1500 μV

IB Input Bias Current VCM = V+

VCM = V– + 0.1Vl

l

0–975

350–350

9750

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.1V to V+ l 700 1950 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– + 0.1V (Note 5)

l

l

0–180

30–30

1800

nAnA

IOS Input Offset Current VCM = V+

VCM = V– + 0.1Vl

l

1515

110110

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.1V to V+ l 30 220 nA

AVOL Large-Signal Voltage Gain VS = 5V, VO = 75mV to 4.8V, RL = 10kVS = 3V, VO = 75mV to 2.8V, RL = 10k

l

l

400300

25002000

V/mVV/mV

CMRR Common Mode Rejection Ratio VS = 5V, VCM = V– + 0.1V to V+

VS = 3V, VCM = V– + 0.1V to V+l

l

7773

8681

dBdB

CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V– + 0.1V to V+

VS = 3V, VCM = V– + 0.1V to V+l

l

7269

8683

dBdB

PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l 86 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l 80 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 2.5mA

l

l

l

1845110

4080220

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 2.5mA

l

l

l

3.560170

15120300

mVmVmV

ISC Short-Circuit Current VS = 5VVS = 3V

l

l

±7.5±7.5

±15±15

mAmA

IS Supply Current per Amplifi er l 2.0 2.7 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4VVS = 3V, AV = –1, RL = Open

l

l

2.21.9

3.63.2

V/μsV/μs

Page 6: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

6

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

300300

11001100

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+ – 0.5V

l

l

0.51.5

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.5V to V+ – 0.5V l 250 2300 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.5V, V+ – 0.5V (Note 5) l 300 1900 μV

IB Input Bias Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

0–1100

450–450

11000

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.5V to V+ – 0.5V l 900 2200 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)VCM = V– + 0.5V (Note 5)

l

l

0–400

40–40

4000

nAnA

IOS Input Offset Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

4040

300300

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.5V to V+ – 0.5V l 80 600 nA

AVOL Large-Signal Voltage Gain VS = 5V, VO = 0.5V to 4.5V, RL = 10kVS = 3V, VO = 0.5V to 2.5V, RL = 10k

l

l

4020

210210

V/mVV/mV

CMRR Common Mode Rejection Ratio VS = 5V, VCM = V– + 0.5V to V+ – 0.5VVS = 3V, VCM = V– + 0.5V to V+ – 0.5V

l

l

6662

8075

dBdB

CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V– + 0.5V to V+ – 0.5VVS = 3V, VCM = V– + 0.5V to V+ – 0.5V

l

l

6258

8075

dBdB

PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l 86 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l 80 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 2.5mA

l

l

l

2245110

5080220

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 2.5mA

l

l

l

3.560170

20120350

mVmVmV

ISC Short-Circuit Current VS = 5VVS = 3V

l

l

±5±5

±15±15

mAmA

IS Supply Current per Amplifi er l 2.4 3.0 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4VVS = 3V, AV = –1, RL = Open

l

l

2.01.7

3.63.2

V/μsV/μs

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range –40°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)

Page 7: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

7

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range –55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

300300

11001100

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+ – 0.5V

l

l

0.51.5

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.5V to V+ – 0.5V l 250 2300 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.5V, V+ – 0.5V (Note 5) l 300 1900 μV

IB Input Bias Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

0–1100

450–450

11000

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.5V to V+ – 0.5V l 900 2200 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)VCM = V– + 0.5V (Note 5)

l

l

0–400

40–40

4000

nAnA

IOS Input Offset Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

4040

300300

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.5V to V+ – 0.5V l 80 600 nA

AVOL Large-Signal Voltage Gain VS = 5V, VO = 0.5V to 4.5V, RL = 10kVS = 3V, VO = 0.5V to 2.5V, RL = 10k

l

l

4020

210210

V/mVV/mV

CMRR Common Mode Rejection Ratio VS = 5V, VCM = V– + 0.5V to V+ – 0.5VVS = 3V, VCM = V– + 0.5V to V+ – 0.5V

l

l

6662

8075

dBdB

CMRR Match (Channel-to-Channel) (Note 5) VS = 5V, VCM = V– + 0.5V to V+ – 0.5VVS = 3V, VCM = V– + 0.5V to V+ – 0.5V

l

l

6258

8075

dBdB

PSRR Power Supply Rejection Ratio VS = 2.5V to 12V, VCM = VO = 0.5V l 86 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = 2.5V to 12V, VCM = VO = 0.5V l 80 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 2.5mA

l

l

l

2245110

5080220

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 2.5mA

l

l

l

3.560170

20120350

mVmVmV

ISC Short-Circuit Current VS = 5VVS = 3V

l

l

±5±5

±15±15

mAmA

IS Supply Current per Amplifi er l 2.4 3.0 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate (Note 8) VS = 5V, AV = –1, RL = Open, VO = 4VVS = 3V, AV = –1, RL = Open

l

l

2.01.7

3.63.2

V/μsV/μs

Page 8: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

8

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V–200200

800800

μVμV

ΔVOS Input Offset Voltage Shift VCM = V– to V+ 150 650 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V+, V– (Note 5) 250 1400 μV

IB Input Bias Current VCM = V+

VCM = V–0

–715250

–2507150

nAnA

ΔIB Input Bias Current Shift VCM = V– to V+ 500 1430 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– (Note 5)

0–120

12–12

1200

nAnA

IOS Input Offset Current VCM = V+

VCM = V–66

7070

nAnA

ΔIOS Input Offset Current Shift VCM = V– to V+ 12 140 nA

Input Noise Voltage 0.1Hz to 10Hz 400 nVP-P

en Input Noise Voltage Density f = 1kHz 12 nV/√Hz

in Input Noise Current Density f = 1kHz 0.3 pA/√Hz

AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10kVO = –10V to 10V, RL = 2k

1000500

52002300

V/mVV/mV

Channel Separation VO = –10V to 10V, RL = 2k 116 130 dB

CMRR Common Mode Rejection Ratio VCM = V– to V+ 93 106 dB

CMRR Match (Channel-to-Channel) (Note 5) VCM = V– to V+ 87 103 dB

PSRR Power Supply Rejection Ratio VS = ±5V to ±15V 89 110 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V 83 105 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 10mA

1840230

3080

500

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 10mA

2.555420

10120800

mVmVmV

ISC Short-Circuit Current ±15 ±30 mA

IS Supply Current per Amplifi er 1.8 2.5 mA

GBW Gain-Bandwidth Product (Note 7) 6.8 10.5 MHz

SR Slew Rate AV = –1, RL = Open, VO = ±10V Measure at VO = ±5V

3.5 6 V/μs

TA = 25°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. ELECTRICAL CHARACTERISTICS

Page 9: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

9

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range 0°C < TA < 70°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V– + 0.1Vl

l

200200

900900

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+

l

l

1.02.0

3.55.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.1V to V+ l 200 750 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.1V, V+ (Note 5) l 350 1500 μV

IB Input Bias Current VCM = V+

VCM = V– + 0.1Vl

l

0–875

300–300

8750

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.1V to V+ l 600 1750 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– + 0.1V (Note 5)

l

l

0–180

20–20

1800

nAnA

IOS Input Offset Current VCM = V+

VCM = V– + 0.1Vl

l

1515

9090

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.1V to V+ l 30 180 nA

AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10kVO = –10V to 10V, RL = 2k

l

l

900400

50002000

V/mVV/mV

Channel Separation VO = –10V to 10V, RL = 2k l 112 125 dB

CMRR Common Mode Rejection Ratio VCM = V– + 0.1V to V+ l 92 103 dB

CMRR Match (Channel-to-Channel) (Note 5) VCM = V– + 0.1V to V+ l 86 103 dB

PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l 88 103 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l 82 103 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 10mA

l

l

l

1845270

4090520

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 10mA

l

l

l

3.560480

15120

1000

mVmVmV

ISC Short-Circuit Current l ±12 ±28 mA

IS Supply Current per Amplifi er l 1.9 2.8 mA

GBW Gain-Bandwidth Product (Note 7) l 6.1 9 MHz

SR Slew Rate AV = –1, RL = Open, VO = ±10V Measured at VO = ±5V

l 3.4 5.3 V/μs

Page 10: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

10

ELECTRICAL CHARACTERISTICS The l denotes the specifi cations which apply over the temperature range –40°C < TA < 85°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+

VCM = V– + 0.1Vl

l

300300

950950

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+

l

l

1.02.0

3.55.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.1V to V+ l 250 850 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.1V, V+ (Note 5) l 350 1800 μV

IB Input Bias Current VCM = V+

VCM = V– + 0.1Vl

l

0–1050

350–350

10500

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.1V to V+ l 700 2100 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ (Note 5)VCM = V– + 0.1V (Note 5)

l

l

0–200

20–20

2000

nAnA

IOS Input Offset Current VCM = V+

VCM = V– + 0.1Vl

l

1515

115115

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.1V to V+ l 30 230 nA

AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10kVO = –10V to 10V, RL = 2k

l

l

800350

50002000

V/mVV/mV

Channel Separation VO = –10V to 10V, RL = 2k l 110 120 dB

CMRR Common Mode Rejection Ratio VCM = V– + 0.1V to V+ l 90 101 dB

CMRR Match (Channel-to-Channel) (Note 5) VCM = V– + 0.1V to V+ l 86 100 dB

PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l 88 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l 82 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 10mA

l

l

l

2550275

50100520

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 10mA

l

l

l

3.565500

15120

1000

mVmVmV

ISC Short-Circuit Current l ±10 ±18 mA

IS Supply Current per Amplifi er l 2.0 3.0 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate AV = –1, RL = Open, VO = ±10V Measure at VO = ±5V

l 3 4.75 V/μs

Page 11: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

11

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

350350

13001300

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+ – 0.5V

l

l

1.02.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.5V to V+ – 0.5V l 250 1500 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.5V, V+ – 0.5V (Note 5) l 400 2200 μV

IB Input Bias Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

0–1200

500–500

12000

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.5V to V+ – 0.5V l 1000 2400 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)VCM = V– + 0.5V (Note 5)

l

l

0–400

40–40

4000

nAnA

IOS Input Offset Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

4040

300300

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.5V to V+ – 0.5V l 80 600 nA

AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k l 40 400 V/mV

Channel Separation VO = –10V to 10V, RL = 2k l 110 120 dB

CMRR Common Mode Rejection Ratio VCM = V– + 0.5V to V+ – 0.5V l 86 100 dB

CMRR Match (Channel-to-Channel) (Note 5) VCM = V– + 0.5V to V+ – 0.5V l 80 100 dB

PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l 88 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l 80 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 10mA

l

l

l

2550275

75100520

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 10mA

l

l

l

3.565500

20120

1400

mVmVmV

ISC Short-Circuit Current l ±7.5 ±12 mA

IS Supply Current per Amplifi er l 2.5 3.2 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate AV = –1, RL = Open, VO = ±10V Measure at VO = ±5V

l 2.2 4.75 V/μs

The l denotes the specifi cations which apply over the temperature range –40°C < TA < 125°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4) ELECTRICAL CHARACTERISTICS

Page 12: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

12

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings

may cause permanent damage to the device. Exposure to any Absolute

Maximum Rating condition for extended periods may affect device

reliability and lifetime.

Note 2: A heat sink may be required to keep the junction temperature

below the absolute maximum rating when the output is shorted

indefi nitely.

Note 3: This parameter is not 100% tested.

Note 4: The LT1498C/LT1499C are guaranteed to meet specifi ed

performance from 0°C to 70°C. The LT1498C/LT1499C are designed,

characterized and expected to meet specifi ed performance from –40°C

to 85°C but are not tested or QA sampled at these temperatures. The

LT1498I/LT1499I are guaranteed to meet specifi ed performance from

–40°C to 85°C. The LT1498H/LT1499H are guaranteed to meet specifi ed

performance from –40°C to 125°C. The LT1498MP is guaranteed to meet

specifi ed performance from –55°C to 125°C.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

350350

13001300

μVμV

VOS TC Input Offset Voltage Drift (Note 3)VCM = V+ – 0.5V

l

l

1.02.0

μV/°CμV/°C

ΔVOS Input Offset Voltage Shift VCM = V– + 0.5V to V+ – 0.5V l 250 1500 μV

Input Offset Voltage Match (Channel-to-Channel) VCM = V– + 0.5V, V+ – 0.5V (Note 5) l 400 2200 μV

IB Input Bias Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

0–1200

500–500

12000

nAnA

ΔIB Input Bias Current Shift VCM = V– + 0.5V to V+ – 0.5V l 1000 2400 nA

Input Bias Current Match (Channel-to-Channel) VCM = V+ – 0.5V (Note 5)VCM = V– + 0.5V (Note 5)

l

l

0–400

40–40

4000

nAnA

IOS Input Offset Current VCM = V+ – 0.5VVCM = V– + 0.5V

l

l

4040

300300

nAnA

ΔIOS Input Offset Current Shift VCM = V– + 0.5V to V+ – 0.5V l 80 600 nA

AVOL Large-Signal Voltage Gain VO = –14.5V to 14.5V, RL = 10k l 40 400 V/mV

Channel Separation VO = –10V to 10V, RL = 2k l 110 120 dB

CMRR Common Mode Rejection Ratio VCM = V– + 0.5V to V+ – 0.5V l 86 100 dB

CMRR Match (Channel-to-Channel) (Note 5) VCM = V– + 0.5V to V+ – 0.5V l 80 100 dB

PSRR Power Supply Rejection Ratio VS = ±5V to ±15V l 88 100 dB

PSRR Match (Channel-to-Channel) (Note 5) VS = ±5V to ±15V l 80 100 dB

VOL Output Voltage Swing (Low) (Note 6) No LoadISINK = 0.5mAISINK = 10mA

l

l

l

2550275

75100520

mVmVmV

VOH Output Voltage Swing (High) (Note 6) No LoadISOURCE = 0.5mAISOURCE = 10mA

l

l

l

3.565500

20120

1400

mVmVmV

ISC Short-Circuit Current l ±7.5 ±12 mA

IS Supply Current per Amplifi er l 2.5 3.2 mA

GBW Gain-Bandwidth Product (Note 7) l 5.8 8.5 MHz

SR Slew Rate AV = –1, RL = Open, VO = ±10V Measure at VO = ±5V

l 2.2 4.75 V/μs

The l denotes the specifi cations which apply over the temperature range –55°C < TA < 125°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)

Note 5: Matching parameters are the difference between amplifi ers A and

D and between B and C on the LT1499; between the two amplifi ers on the

LT1498.

Note 6: Output voltage swings are measured between the output and

power supply rails.

Note 7: VS = 3V, VS = ±15V GBW limit guaranteed by correlation to

5V tests.

Note 8: VS = 3V, VS = 5V slew rate limit guaranteed by correlation to

±15V tests.

Page 13: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

13

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage Supply Current vs TemperatureInput Bias Current vs Common Mode Voltage

Input Bias Current vs TemperatureOutput Saturation Voltage vs Load Current (Output High)

Output Saturation Voltage vs Load Current (Output Low)

VOS Distribution, VCM = 0V(PNP Stage)

VOS Distribution VCM = 5V(NPN Stage) ΔVOS Shift for VCM = 0V to 5V

INPUT OFFSET VOLTAGE (μV)

–500

PER

CEN

T O

F U

NIT

S (

%)

15

20

25

300

14989 G01

10

5

0–300 –100 100 500

LT1498: N8, S8 PACKAGESLT1499: S14 PACKAGEVS = 5V, 0VVCM = 0V

INPUT OFFSET VOLTAGE (μV)

–500

PER

CEN

T O

F U

NIT

S (

%)

15

20

25

300

14989 G02

10

5

0–300 –100 100 500

LT1498: N8, S8 PACKAGESLT1499: S14 PACKAGEVS = 5V, 0VVCM = 5V

INPUT OFFSET VOLTAGE (μV)

–500

PER

CEN

T O

F U

NIT

S (

%)

15

20

25

300

14989 G03

10

5

0–300 –100 100 500

LT1498: N8, S8 PACKAGESLT1499: S14 PACKAGEVS = 5V, 0VVCM = 0V TO 5V

TOTAL SUPPLY VOLTAGE (V)

0

SU

PP

LY

CU

RR

EN

T P

ER

AM

PLIF

IER

(m

A)

1.0

1.5

32

14989 G04

0.5

08 16 244 3612 20 28

2.0

TA = 125°C

TA = 25°C

TA = –55°C

TEMPERATURE (°C)

–50

SU

PP

LY

CU

RR

EN

T P

ER

AM

PLIF

IER

(m

A)

25

14989 G05

1.0

0.5

–25 0 500

2.0

1.5

75 100 125

VS = 15V

VS = 5V, 0V

COMMON MODE VOLTAGE (V)

–2

INP

UT B

IAS

CU

RR

EN

T (

nA

)

0

200

2 3 4 5 6

14989 G06

–200

–400–1 0 1

400

–100

100

–300

300

VS = 5V, 0V

TA = 125°C

TA = 25°C TA = –55°C

TEMPERATURE (°C)

–50

INP

UT B

IAS

CU

RR

EN

T (

nA

)

400

300

200

100

0

–100

–200

–300

–40070

14989 G07

–20 10 40–35 85–5 25 55 100

VS = 5V, 0VVCM = 5V

VS = 5V, 0VVCM = 0V

VS = 15VVCM = 15V

VS = 15VVCM = –15V

NPN ACTIVE

PNP ACTIVE

LOAD CURRENT (mA)

10

SA

TU

RA

TIO

N V

OLTA

GE (

mV

)

100

0.001 0.1 1 10

14989 G08

10.01

1000

TA = –55°C

TA = 25°C

TA = 125°C

LOAD CURRENT (mA)

10

SA

TU

RA

TIO

N V

OLTA

GE (

mV

)

100

0.001 0.1 1 10

14989 G09

10.01

1000

TA = –55°C

TA = 25°C

TA = 125°C

Page 14: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

14

TYPICAL PERFORMANCE CHARACTERISTICS

Noise Current Spectrum Gain and Phase vs Frequency CMRR vs Frequency

PSRR vs FrequencyGain Bandwidth and Phase Margin vs Supply Voltage Channel Separation vs Frequency

Minimum Supply Voltage0.1Hz to 10Hz Output Voltage Noise Noise Voltage Spectrum

TOTAL SUPPLY VOLTAGE (V)

10

CH

AN

GE I

N O

FFS

ET V

OLTA

GE (

μV

)

50

100

150

200

2 3 4 5

14989 G10

250

300

TA = 85°C

TA = 25°C

TA = 70°C

NONFUNCTIONALTA = –55°C

TIME (1s/DIV)

0 10

OU

TP

UT V

OLTA

GE (

200nV

/DIV

)

14989 G11

VS = 2.5VVCM = 0V

FREQUENCY (Hz)

1

80

NO

ISE V

OLTA

GE (

nV

/H

z)

100

120

140

160

10 100 1000

14989 G12

60

40

20

0

180

200VS = 5V, 0V

VCM = 2.5VPNP ACTIVE

VCM = 4VNPN ACTIVE

FREQUENCY (Hz)

1

4

CU

RR

EN

T N

OIS

E (

pA

/√H

z)

5

6

7

8

10 100 1000

14989 G13

3

2

1

0

9

10VS = 5V, 0V

VCM = 2.5VPNP ACTIVE

VCM = 4VNPN ACTIVE

FREQUENCY (MHz)

–10

VO

LTA

GE G

AIN

(dB

) PH

AS

E S

HIFT

(DEG

)

10

30

20

50

70

–20

0

40

60

0.01 1 10 100

14989 G14

–30

–108

–36

36

0

108

180

–144

–72

72

144

–1800.1

PHASE

GAIN

RL = 10kVS = 1.5VVS = 15V

FREQUENCY (kHz)

40

CO

MM

ON

MO

DE R

EJE

CTIO

N R

ATIO

(dB

)

60

80

70

100

120

30

50

90

110

1 100 1000 10000

14989 G15

2010

VS = 15V

VS = 2.5V

FREQUENCY (kHz)

10

PO

WER

SU

PP

LY

REJE

CTIO

N R

ATIO

(dB

)

30

50

40

70

90

0

20

60

80

1 100 1000 10000

14989 G16

–1010

VS = 2.5V

POSITIVE SUPPLY

NEGATIVE SUPPLY

TOTAL SUPPLY VOLTAGE (V)

00

GA

IN B

AN

DW

IDTH

(M

Hz) P

HA

SE M

AR

GIN

(DEG

)

4

6

8

10

12

14

5 10 15 20

14989 G17

25

16

18

20

2

0

20

30

40

50

60

70

80

90

100

10

30

PHASE MARGIN

GAIN BANDWIDTH

FREQUENCY (kHz)

0.01

–110

CH

AN

NEL S

EP

AR

ATIO

N (

dB

)

–100

–90

–80

–70

0.1 1 10 100 1000

14989 G18

–120

–130

–140

–150

–60

–50VS = 15VVOUT = 1VP-PRL = 2k

Page 15: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

15

TYPICAL PERFORMANCE CHARACTERISTICS

Open-Loop Gain Open-Loop Gain Warm-Up Drift vs Time

Total Harmonic Distortion + Noise vs Peak-to-Peak Voltage

Total Harmonic Distortion + Noise vs Frequency

Capacitive Load Handling Slew Rate vs Supply VoltageOutput Step vs Settling Time to 0.01%

CAPACITIVE LOAD (pF)

20

OV

ER

SH

OO

T (

%)

50

70

40

10 1000 10000 100000

14989 G19

0100

60

30

10

VS = 5V, 0VAV = 1RL = 1k

TOTAL SUPPLY VOLTAGE (V)

03

SLEW

RA

TE (

V/μ

s)

4

6

7

8

8 16 20 36

14989 G20

5

4 12 24 28 32

9VOUT = 80% OF VSAV = –1

RISING EDGE

FALLING EDGE

SETTLING TIME (μs)

1.5–10

OU

TP

UT S

TEP

(V

)

–8

–4

–2

0

10

4

2.0 2.5

14989 G21

–6

6

8

2

3.0 3.5

VS = 15V

NONINVERTING

INVERTING

INVERTING

NONINVERTING

OUTPUT VOLTAGE (V)

–20 –15

INP

UT V

OLTA

GE (

μV

)

0

10

20

14989 G22

–10

–20–10 –5 0 5 10 15

20

–5

5

–15

15

VS = 15V

RL = 2k

RL = 10k

OUTPUT VOLTAGE (V)

0

INP

UT V

OLTA

GE (

μV

)

–1

0

1

3 5

14989 G23

–2

–3

–41 2 4

2

3

4

6

VS = 5V, 0V

RL = 2k

RL = 10k

TIME AFTER POWER-UP (SEC)

0

CH

AN

GE I

N O

FFS

ET V

OLTA

GE (

μV

)–10

0

10

60 100 160

14989 G24

–20

–30

–4020 40 80 120 140

S8 PACKAGE, VS = 2.5V

S8 PACKAGE, VS = 15V

N8 PACKAGE, VS = 15V

LT1499CS, VS = 15V

N8 PACKAGE, VS = 2.5V

LT1499CS, VS = 2.5V

INPUT VOLTAGE (VP-P)

0.001

TH

D +

NO

ISE (

%)

0.01

0.1

1

0 2 3 40.0001

1 5

14989 G25

f = 1kHzRL = 10k

AV = –1VS = 1.5V

AV = 1VS = 1.5V

AV = 1VS = 2.5V

AV = –1VS = 2.5V

FREQUENCY (kHz)

0.01

TH

D +

NO

ISE (

%)

0.01

0.1

1

0.1 1 10 100

14989 G26

0.001

VS = 1.5VVIN = 2VP-PRL = 10k

AV = 1

AV = –1

Page 16: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

16

TYPICAL PERFORMANCE CHARACTERISTICS

±15V Small-Signal Response ±15V Large-Signal Response

5V Small-Signal Response 5V Large-Signal Response

200ns/DIV

5m

V/D

IV

14989 G27 VS = 5V AV = 1 VIN = 20mVP-P AT 50kHzRL = 1k

2μs/DIV

1V

/DIV

14989 G28 VS = 5V AV = 1 VIN = 4VP-P AT 10kHzRL = 1k

200ns/DIV

5m

V/D

IV

14989 G29 VS = 15VAV = 1 VIN = 20mVP-P AT 50kHzRL = 1k

2μs/DIV

5V

/DIV

14989 G30 VS = 15VAV = 1 VIN = 20VP-P AT 10kHzRL = 1k

Page 17: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

17

APPLICATIONS INFORMATION

Figure 1. LT1498 Simplifi ed Schematic Diagram

Rail-to-Rail Input and Output

The LT1498/LT1499 are fully functional for an input and output signal range from the negative supply to the posi-tive supply. Figure 1 shows a simplifi ed schematic of the amplifi er. The input stage consists of two differential am-plifi ers, a PNP stage (Q1/Q2) and an NPN stage (Q3/Q4) which are active over different ranges of input common mode voltage. A complementary common emitter output stage (Q14/Q15) is employed allowing the output to swing from rail-to-rail. The devices are fabricated on Linear Technology’s proprietary complementary bipolar process to ensure very similar DC and AC characteristics for the output devices (Q14/Q15).

The PNP differential input pair is active for input com-mon mode voltages, VCM, between the negative supply to approximately 1.3V below the positive supply. As VCM moves further toward the positive supply, the transistor (Q5) will steer the tail current, I1, to the current mirror (Q6/Q7) activating the NPN differential pair, and the PNP differential pair becomes inactive for the rest of the input common mode range up to the positive supply.

The output is confi gured with a pair of complementary common emitter stages that enables the output to swing from rail to rail. Capacitors (C1 and C2) form local feedback loops that lower the output impedance at high frequencies.

Input Offset Voltage

The offset voltage changes depending upon which input stage is active. The input offsets are random, but are trimmed to less than 475μV. To maintain the precision characteristics of the amplifi er, the change of VOS over the entire input common mode range (CMRR) is guaranteed to be less than 425μV on a single 5V supply.

Input Bias Current

The input bias current polarity also depends on the input common mode voltage, as described in the previous sec-tion. When the PNP differential pair is active, the input bias currents fl ow out of the input pins; they fl ow in opposite direction when the NPN input stage is active. The offset error due to input bias current can be minimized by equalizing the noninverting and inverting input source impedances. This will reduce the error since the input offset currents are much less than the input bias currents.

Q4

Q6

VBIAS

D6D5

+IN

D2

Q3

Q7

Q1

I1

Q9

Q2

D4

D1

D3

–IN OUT

V–

V+

Q5

Q12

Q10

Q8

Q14

14989 F01

C1

R1

R6

R3

V– CC

R4 R5

C2

R2

Q11 Q13

Q15

BUFFERAND

OUTPUT BIAS

R7

Page 18: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

18

APPLICATIONS INFORMATIONOverdrive Protection

To prevent the output from reversing polarity when the input voltage exceeds the power supplies, two pair of crossing diodes D1 to D4 are employed. When the input voltage exceeds either power supply by approximately 700mV, D1/D2 or D3/D4 will turn on, forcing the output to the proper polarity. For the phase reversal protection to work properly, the input current must be less than 5mA. If the amplifi er is to be severely overdriven, an external resistor should be used to limit the overdrive current.

Furthermore, the LT1498/LT1499’s input stages are pro-tected by a pair of back-to-back diodes, D5/D6. When a differential voltage of more than 0.7V is applied to the inputs, these diodes will turn on, preventing the Zener breakdown of the input transistors. The current in D5/D6 should be limited to less than 10mA. Internal resistors R6 and R7 (700Ω total) limit the input current for differential input signals of 7V or less. For larger input levels, a re-sistor in series with either or both inputs should be used to limit the current. Worst-case differential input voltage usually occurs when the output is shorted to ground. In addition, the amplifi er is protected against ESD strikes up to 3kV on all pins.

Figure 2b. LT1498 Large-Signal ResponseFigure 2a. LT1498 Small-Signal Response

CL = 10nF

CL = 500pF

CL = 0pF

14989 F02a VS = 5V AV = 1

CL = 10nF

CL = 500pF

CL = 0pF

14989 F02b VS = 5V AV = 1

Capacitive Load

The LT1498/LT1499 are designed for ease of use. The amplifi er can drive a capacitive load of more than 10nF without oscillation at unity gain. When driving a heavy capacitive load, the bandwidth is reduced to maintain stability. Figures 2a and 2b illustrate the stability of the device for small-signal and large-signal conditions with capacitive loads. Both the small-signal and large-signal transient response with a 10nF capacitive load are well behaved.

Feedback Components

To minimize the loading effect of feedback, it is possible to use the high value feedback resistors to set the gain. However, care must be taken to insure that the pole formed by the feedback resistors and the total input capacitance at the inverting input does not degrade the stability of the amplifi er. For instance, the LT1498/LT1499 in a noninvert-ing gain of 2, set with two 30k resistors, will probably oscillate with 10pF total input capacitance (5pF input capacitance + 5pF board capacitance). The amplifi er has a 2.5MHz crossing frequency and a 60° phase margin at 6dB of gain. The feedback resistors and the total input capacitance create a pole at 1.06MHz that induces 67° of phase shift at 2.5MHz! The solution is simple, either lower the value of the resistors or add a feedback capacitor of 10pF of more.

Page 19: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

19

1A Voltage Controlled Current Source

1A Voltage Controlled Current Sink

+

1/2 LT14981k

500pF

tr < 1μs 14989 TA03

Si9430DY

VIN

V+

RL

100Ω

0.5Ω

1k

IOUT =IOUTV+ – VIN

0.5Ω

1kVIN

+

1/2 LT1498

500pF

14989 TA04

Si9410DY

V+V+

RLIOUT

100Ω

0.5Ω

1k

IOUT =VIN

0.5Ωtr < 1μs

Input Bias Current Cancellation

TYPICAL APPLICATIONS

+

+

1M

1M

CANCELLATIONAMP

SIGNALAMP

22pF

INPUT BIAS CURRENT LESS THAN 50nA FOR 500mV ≤ VIN ≤ (V+ – 500mV)

1/2 LT1498

1/2 LT1498

RF

VOUT

14989 TA05

VIN

RG

Page 20: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

20

PACKAGE DESCRIPTIONN8 Package

8-Lead PDIP (Narrow .300 Inch)(Reference LTC DWG # 05-08-1510)

N8 1002

.065(1.651)

TYP

.045 – .065(1.143 – 1.651)

.130 .005(3.302 0.127)

.020(0.508)

MIN.018 .003(0.457 0.076)

.120(3.048)

MIN

1 2 3 4

8 7 6 5

.255 .015*(6.477 0.381)

.400*(10.160)

MAX

.008 – .015(0.203 – 0.381)

.300 – .325(7.620 – 8.255)

.325+.035–.015+0.889–0.3818.255

NOTE:1. DIMENSIONS ARE

INCHESMILLIMETERS

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

.100(2.54)BSC

Page 21: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

21

PACKAGE DESCRIPTIONS8 Package

8-Lead Plastic Small Outline (Narrow .150 Inch)(Reference LTC DWG # 05-08-1610)

.016 – .050(0.406 – 1.270)

.010 – .020(0.254 – 0.508)

45

0 – 8 TYP.008 – .010

(0.203 – 0.254)

SO8 0303

.053 – .069(1.346 – 1.752)

.014 – .019(0.355 – 0.483)

TYP

.004 – .010(0.101 – 0.254)

.050(1.270)

BSC

1 2 3 4

.150 – .157(3.810 – 3.988)

NOTE 3

8 7 6 5

.189 – .197(4.801 – 5.004)

NOTE 3

.228 – .244(5.791 – 6.197)

.245MIN .160 .005

RECOMMENDED SOLDER PAD LAYOUT

.045 .005.050 BSC

.030 .005 TYP

INCHES(MILLIMETERS)

NOTE:1. DIMENSIONS IN

2. DRAWING NOT TO SCALE3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

Page 22: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

22

PACKAGE DESCRIPTIONS Package

14-Lead Plastic Small Outline (Narrow .150 Inch)(Reference LTC DWG # 05-08-1610)

1

N

2 3 4

.150 – .157(3.810 – 3.988)

NOTE 3

14 13

.337 – .344(8.560 – 8.738)

NOTE 3

.228 – .244(5.791 – 6.197)

12 11 10 9

5 6 7

N/2

8

.016 – .050(0.406 – 1.270)

.010 – .020(0.254 – 0.508)

45

0 – 8 TYP.008 – .010

(0.203 – 0.254)

S14 0502

.053 – .069(1.346 – 1.752)

.014 – .019(0.355 – 0.483)

TYP

.004 – .010(0.101 – 0.254)

.050(1.270)

BSC

.245MIN

N

1 2 3 N/2

.160 .005

RECOMMENDED SOLDER PAD LAYOUT

.045 .005.050 BSC

.030 .005 TYP

INCHES(MILLIMETERS)

NOTE:1. DIMENSIONS IN

2. DRAWING NOT TO SCALE3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

Page 23: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

23Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

REVISION HISTORYREV DATE DESCRIPTION PAGE NUMBER

E 10/09 Edit in Absolute Maximum Ratings 2

F 01/10 Added LT1498H/LT1499H (H-Grade) Parts. Refl ected throughout the data sheet. 2-24

G 03/10 Updated Part Markings in Order Information Section

Updated Conditions for AVOL in Electrical Characteristics Section

2

6, 7

(Revision history begins at Rev E)

Page 24: LT1498/LT1499 - 10MHz, 6V/μs, Dual/Quad Rail-to-Rail Input ......LT1498/LT1499 14989fg 3 ELECTRICAL CHARACTERISTICS T A = 25 C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,

LT1498/LT1499

14989fg

24 Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2009

LT 0410 REV G • PRINTED IN USA

RELATED PARTS

TYPICAL APPLICATIONBidirectional Current Sensor

A bidirectional current sensor for battery-powered sys-tems is shown in Figure 3. Two outputs are provided: one proportional to charge current, the other proportional to discharge current. The circuit takes advantage of the LT1498’s rail-to-rail input range and its output phase reversal protection. During the charge cycle, the op amp

A1 forces a voltage equal to (IL)(RSENSE) across RA. This voltage is then amplifi ed at the Charge Out by the ratio of RB over RA. In this mode, the output of A2 remains high, keeping Q2 off and the Discharge Out low, even though the (+) input of A2 exceeds the positive power supply. During the discharge cycle, A2 and Q2 are active and the operation is similar to the charge cycle.

Figure 3. Bidirectional Current Sensor

+

+A1

1/2 LT1498A2

1/2 LT1498

Q2MTP23P06

VO = IL

= 1V/A

FOR RA = 1k, RB = 10k

RSENSEDISCHARGEOUT

CHARGEOUT

Q1MTP23P06

RA

RB

RB

RA

RA

RA

VBATTERYVBATTERY

14989 F03

DISCHARGE

ILCHARGE

RA

RSENSE0.1Ω

RB

( )VO

IL

PART NUMBER DESCRIPTION COMMENTS

LTC®1152 Rail-to-Rail Input and Output, Zero-Drift Op Amp High DC Accuracy, 10μV VOS(MAX), 100nV/°C Drift, 1MHz GBW, 1V/μs Slew Rate, Max Supply Current 2.2mA

LT1211/LT1212 Dual/Quad 14MHz, 7V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max Drift, Max Supply Current 1.8mA per Op Amp

LT1213/LT1214 Dual/Quad 28MHz, 12V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max Drift, Max Supply Current 3.5mA per Op Amp

LT1215/LT1216 Dual/Quad 23MHz, 50V/μs, Single Supply Precision Op Amps Input Common Mode Includes Ground, 450μV VOS(MAX), Max Supply Current 6.6mA per Op Amp

LT1366/LT1367 Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps 475μV VOS(MAX), 400kHz GBW, 0.13V/μs Slew Rate, Max Supply Current 520μA per Op Amp

LT1490/LT1491 Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps Max Supply Current 50μA per Op Amp, 200kHz GBW, 0.07V/μs Slew Rate, Operates with Inputs 44V Above V– Independent of V+

LT1884/LT1885 Dual/Quad, Rail-to-Rail Output Picoamp Input Precision Op Amps ICC = 650μA, VOS < 50μV, IB < 400pA