Lecture 4 • Roots of complex numbers • Characterization of a

17
Lecture 4 Roots of complex numbers Characterization of a polynomial by its roots Techniques for solving polynomial equations

Transcript of Lecture 4 • Roots of complex numbers • Characterization of a

Page 1: Lecture 4 • Roots of complex numbers • Characterization of a

Lecture 4

• Roots of complex numbers

• Characterization of a polynomial by its roots

• Techniques for solving polynomial equations

Page 2: Lecture 4 • Roots of complex numbers • Characterization of a

ROOTS OF COMPLEX NUMBERS

Def.:

• A number u is said to be an n-th root of complex number zif un = z, and we write u = z1/n.

Th.:

• Every complex number has exactly n distinct n-th roots.

Let z = r(cos θ + i sin θ); u = ρ(cosα+ i sinα). Then

r(cos θ + i sin θ) = ρn(cosα+ i sinα)n = ρn(cosnα+ i sinnα)

⇒ ρn = r , nα = θ + 2πk (k integer)

Thus ρ = r1/n , α = θ/n+ 2πk/n .

n distinct values for k from 0 to n− 1. (z 6= 0)

So u = z1/n = r1/n[

cos

(

θ

n+

2πk

n

)

+ i sin

(

θ

n+

2πk

n

)]

, k = 0, 1, . . . , n−1

Page 3: Lecture 4 • Roots of complex numbers • Characterization of a

Note. f(z) = z1/n is a “multi-valued” function.

1 ( . . 1 0)n nx i e x= ! =

1= e2m! ı " 11/n = e2m! ı /n

=cos(2m!

n

)+ısin(2m!

n

)

!"#$%&'()(*(+,-(.//,0(/1(2+3,4(*(

11/5 = cos(2m!

5) + ısin(

2m!

5) (m = 0,1,2,3,4).

11n

x/

! =

Page 4: Lecture 4 • Roots of complex numbers • Characterization of a

Example 2. Find all cubic roots of z = −1 + i:u = (−1 + i)1/3

u = (√2)1/3

[

cos

(

4

1

3+

2πk

3

)

+ i sin

(

4

1

3+

2πk

3

)]

, k = 0, 1, 2

that is,

k = 0 : 21/6(

cos π4 + i sin π

4

)

k = 1 : 21/6(

cos 11π12 + i sin 11π

12

)

k = 2 : 21/6(

cos 19π12 + i sin 19π

12

)

k=2

k=0

k=1

• Equivalently:

u = (−1 + i)1/3 = e(1/3) ln(−1+i) = e(1/3)[ln√

2+i(3π/4+2kπ)]

= (√2)1/3ei(π/4+2kπ/3)

Page 5: Lecture 4 • Roots of complex numbers • Characterization of a

!""#$%"&%'"()*"+,-($%

1

1 0( ) n n

n nP z a z a z a

!

!" + + + .!

( ) 0izP z = = ! z

i is a root

[Gauss, 1799]

• proof of fundamental theorem of algebra is given in the course

“Functions of a complex variable”, Short Option S1

Page 6: Lecture 4 • Roots of complex numbers • Characterization of a

1

1 20

1

1

1

1

( )( ) ( )

( ( 1) )

n n

n n n

nn

n

j

n n n

n

j

j

j

z z za z a z a a z z z

a z z z z

!

!

!

= =

+ + + = ! ! !

= ! + + ! ." #

! !

!

!"#$#%&'$()(*+,#,-./0*.1(#/,20,(&),$..&),

3..&),.4,-./0*.1(#/),

1

1 0( ) n n

n nP z a z a z a

!

!" + + + .!

( ) 0izP z = = ! z

i is a root

1 0 ( 1)

! !

nn

j jn n

a a

a az z! = ! ; = !" #

!.1-#$(*+,%.'5%('*&),.4,6*78,#*9,6:,

Page 7: Lecture 4 • Roots of complex numbers • Characterization of a

!"#"$%&'()'*+$!%&'*,-.$/$2

2 1 0a x a x a+ +

11 2

2

( )a

x xa

= ! +0

1 2

2

.a

x xa

=0&1$,2$),,3.$ 4),(&+3$,2$),,3.$

( )2

1 1 2 0

1,2

2

4

2

a a a a

xa

! ± !

=

52$+,167!89$),,3.$+,1!$:-$+,167!8$+,-;&#'3!$6':).$

<$

8$

8$

=,,3./$

>!-!)'7$.,7&*,-.$-,3$'?':7'@7!$2,)$A:#A!)$,)(!)$6,7B-,1:'7.$C%&')*+.$'-($'@,?!D$

E'-$F-($.,7&*,-.$:-$.6!+:'7$+'.!.G"$

2,)$),,3.$

H$

Page 8: Lecture 4 • Roots of complex numbers • Characterization of a

Example 1:

z5 + 32 = 0

• The solutions of the given equation are the fifth roots of −32:

(−32)1/5 = 321/5[

cos

(

π

5+

2πk

5

)

+ i sin

(

π

5+

2πk

5

)]

, k = 0, 1, 2, 3, 4

that is,

k = 0 : 2(

cos π5 + i sin π

5

)

k = 1 : 2(

cos 3π5 + i sin 3π

5

)

k = 2 : −2

k = 3 : 2(

cos 7π5 + i sin 7π

5

)

k = 4 : 2(

cos 9π5 + i sin 9π

5

)

Re z

k=0

k=1

k=2

k=3

k=4

Im z

Page 9: Lecture 4 • Roots of complex numbers • Characterization of a

(z + ı)7+ (z ! ı)7

= 0

(z + ı

z ! ı)7 = !1= e(2m+1)" ı

!z + ı

z " ı= e(2m+1)# ı /7

! z(1" e(2m+1)# ı /7 ) = "ı(1+ e(2m+1)# ı /7 )

! z = ı

e(2m+1)" ı /7+1

e(2m+1)" ı /7#1

= ıe(2m+1)! ı /14 + e"(2m+1)! ı /14

e(2m+1)! ı /14 " e"(2m+1)! ı /14= ı2cos( 2m+1

14! )

2ısin( 2m+114

! )= cot( 2m+1

14! )

!"#$%$&$'$($)$*+

,-.!/01+&+2+34456+47+/40894!:.06+

Page 10: Lecture 4 • Roots of complex numbers • Characterization of a

(z + ı)7 + (z ! ı)7 = 0

r n rx y

!!"#$%&&#'(")#)""*#+,"#-'".-%")+#'/## ( )nx y+%)#

0

1

2

3

4

5

1( )

1 1( )

1 2 1( )

1 3 3 1( )

1 4 6 4 1( )

1 5 10 10 5 1( )

x y

x y

x y

x y

x y

x y

+

+

+

+

+

+

0,"1"#23"#-')4")%")+&5#'6+2%)"*#/3'7#821-2&91#+3%2):&"#;#

(z + ı)7 + (z ! ı)7 = 0 " z7! 21z5 + 35z3 ! 7z = 0

1 7 21 35 35 21 7 1<+,#3'$#'/#821-2&91#+3%2):&"#%1# 1'#

=>27?&"#@#;#2)#2&+"3)2A4"#/'37#

Solution:

z = cot( 2m+114

! )

Page 11: Lecture 4 • Roots of complex numbers • Characterization of a

7 5 3

6 4 2

3 2 2

21 35 7 0

21 35 7 0 0

21 35 7 0 ( )

z z z z

z z z or z

w w w w z

! + ! =

" ! + ! = =

" ! + ! = #

!"#$%&'(')*+$#,-*.%)$

/*)$0#$1&'2#)$')$*)%3"#&$4%&5$6$

3 221 35 7 0w w w! + ! =7#)/#$3"#$&%%38$%4$ *&#$

2 2 114

cot ( )mw !

+= ( 0 1 2)m = , ,

2 2 2 1140

cot ( ) 21m

m!+

=" =#9-5$%4$&%%38$

(z + ı)7 + (z ! ı)7 = 0 " z7! 21z5 + 35z3 ! 7z = 0

, 3mz m =

:;*5<+#$=$6$>#3$*)%3"#&$4%&5$

Page 12: Lecture 4 • Roots of complex numbers • Characterization of a

Pascal’s triangle = table of binomial coefficients(

n

r

)

= n!r!(n−r)!

i.e., coefficients of xryn−r in (x+ y)n

[Pascal, 1654]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

• r-th element of n-th row given by sum of two elements above it in (n− 1)-th row:

(

n

r

)

=

(

n − 1

r − 1

)

+

(

n − 1

r

)

[use (x+ y)n = (x+ y)n−1x+ (x+ y)n−1y ]

Page 13: Lecture 4 • Roots of complex numbers • Characterization of a

Historical note

♦ binomial coefficients already known in the middle ages:

• “Pascal’s triangle” first discovered by Chinese mathematicians of 13th

century to find coefficients of (x+ y)n

•(

n

r

)

= n!r!(n−r)! in Hebrew writings of 14th century is

number of combinations of n objects taken r at a time

♦ Pascal (1654) rediscovers triangle and most importantly unitesalgebraic and combinatorial viewpoints

−→ theory of probability; proof by induction

Page 14: Lecture 4 • Roots of complex numbers • Characterization of a

3 27 7 1 0z z z+ + + = .

!"#$# %&'()*+#*",-./*#0)*+*#()*#1&2*+/34&5#*61,7'&#48#&'(#'9:4'18#;#

1 8 28 56 70 56 28 8 1<()#+'0#'=#>,8?,/@8#(+4,&5/*#48#

8 8 7 5 312

3 2 2

[( 1) ( 1) ] 8 56 56 8

8 [ 7 7 1] ( )

z z z z z z

z w w w w z

+ ! ! = + + +

= + + + " .

8'#

A'0##8 8( 1) ( 1) 0z z+ ! ! = #0)*&##

2 81

1em iz

z

! /+

"=

#4B*B#0)*&##

z =

em! ı /4+1

em! ı /4"1

= "ıcot(m! / 8) (m = 1,2,…,7),

8'#()*#+''(8#'=#()*#54:*&#*61,7'&#,+*##

2cot ( 8)z m!= " /

C##

1 2 3m = , ,

B##

0

1

2

3

4

5

1( )

1 1( )

1 2 1( )

1 3 3 1( )

1 4 6 4 1( )

1 5 10 10 5 1( )

� y

x y

x y

x y

x y

x y

+

+

+

+

+

+

Page 15: Lecture 4 • Roots of complex numbers • Characterization of a

Example

Question from 2008 Paper

Find all the solutions of the equation(

z + i

z − i

)n

= −1 ,

and solve

z4 − 10z2 + 5 = 0 .

(

z + i

z − i

)n

= −1 = ei(π+2Nπ) , N integer ⇒z + i

z − i= ei(π/n+2Nπ/n) , N = 0, 1, . . . , n−1

Then : z = iei(π/n+2Nπ/n) + 1

ei(π/n+2Nπ/n)− 1

= icos[π(1 + 2N)/(2n)]

i sin[π(1 + 2N)/(2n)]= cotg

π(1 + 2N)

2n.

Forn = 5 : (z+i)5 = −(z−i)5 ⇒ z(z4−10z2+5) = 0 . Then the 4 roots of z4−10z2+5 = 0 are

cotgπ

10, cotg

10, cotg

10, cotg

10.

Page 16: Lecture 4 • Roots of complex numbers • Characterization of a

2 22 2 2 2 2 2

2 2

2 ( 1)( 2 cos )( 2 cos ) ( 2 cos )

m mz a m

z az a z az a z az az a m m m

! ! !" "= " + " + " + .

"!

!"#$####%&'(#)&*)##

zr= acos

r!

m± a

2 cos2r!

m" a

2

=a(cosr!

m

±ı 1" cos2r!

m)=ae± ır! /m (r=0,1,…,m).

+''),#

21

ma =-.*/012#3'.430.1)# 5678#*1/#9678#0/.1:3*;#

2 2 2 2 2 2 2 22 ( 1)( ) ( )( 2 cos )( 2 cos ) ( 2 cos )

mQ z z a z az a z az a z az a

m m m

! ! !"# " " + " + " + .!

P(z) ! z2m

" a2m

z

r= aer! i /m )6+''),#<#

0=.=#%&'(#)&*)## P(z) = Q(z) where

Page 17: Lecture 4 • Roots of complex numbers • Characterization of a

• This concludes part A of the course.

A. Complex numbers

1 Introduction to complex numbers

2 Fundamental operations with complex numbers

3 Elementary functions of complex variable

4 De Moivre’s theorem and applications

5 Curves in the complex plane

6 Roots of complex numbers and polynomials