Laplace’s equation in polar...

17
Laplace’s equation in polar coordinates Boundary value problem for disk: Δu = u rr + u r r + u θθ r 2 = 0, u(a)= h(θ).

Transcript of Laplace’s equation in polar...

Page 1: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates

Boundary value problem for disk:

∆u = urr +ur

r+

uθθ

r2 = 0, u(a, θ) = h(θ).

Separating variables u = R(r)Θ(θ) givesR′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or

Θ′′

Θ=−r2R′′ − rR′

R= −λ.

Eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Can write ODE solution as Θ = exp(±i√λθ), which is 2π

periodic only when√λ is a positive integer n. If λ = 0, the

only periodic solution is a constant. λ < 0 gives growingexponentials.

Page 2: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates

Boundary value problem for disk:

∆u = urr +ur

r+

uθθ

r2 = 0, u(a, θ) = h(θ).

Separating variables u = R(r)Θ(θ) givesR′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or

Θ′′

Θ=−r2R′′ − rR′

R= −λ.

Eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Can write ODE solution as Θ = exp(±i√λθ), which is 2π

periodic only when√λ is a positive integer n. If λ = 0, the

only periodic solution is a constant. λ < 0 gives growingexponentials.

Page 3: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates

Boundary value problem for disk:

∆u = urr +ur

r+

uθθ

r2 = 0, u(a, θ) = h(θ).

Separating variables u = R(r)Θ(θ) givesR′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or

Θ′′

Θ=−r2R′′ − rR′

R= −λ.

Eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Can write ODE solution as Θ = exp(±i√λθ), which is 2π

periodic only when√λ is a positive integer n. If λ = 0, the

only periodic solution is a constant. λ < 0 gives growingexponentials.

Page 4: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates

Boundary value problem for disk:

∆u = urr +ur

r+

uθθ

r2 = 0, u(a, θ) = h(θ).

Separating variables u = R(r)Θ(θ) givesR′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or

Θ′′

Θ=−r2R′′ − rR′

R= −λ.

Eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Can write ODE solution as Θ = exp(±i√λθ), which is 2π

periodic only when√λ is a positive integer n. If λ = 0, the

only periodic solution is a constant. λ < 0 gives growingexponentials.

Page 5: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =

1 λ = 0cos(nx) λ = n2

sin(nx) λ = n2,

where n = 1,2,3, . . ..

Equation for radial component is Euler equationr2R′′ + rR′ − λR = 0.Solutions are just powers R = rα; plugging in,[α(α− 1) + α− λ]rα = 0 or α = ±

√λ.

If λ = 0, get linearly independent solutions 1 and ln r .Reject (for now) solutions involving ln r and r−α.

Page 6: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =

1 λ = 0cos(nx) λ = n2

sin(nx) λ = n2,

where n = 1,2,3, . . ..Equation for radial component is Euler equationr2R′′ + rR′ − λR = 0.

Solutions are just powers R = rα; plugging in,[α(α− 1) + α− λ]rα = 0 or α = ±

√λ.

If λ = 0, get linearly independent solutions 1 and ln r .Reject (for now) solutions involving ln r and r−α.

Page 7: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =

1 λ = 0cos(nx) λ = n2

sin(nx) λ = n2,

where n = 1,2,3, . . ..Equation for radial component is Euler equationr2R′′ + rR′ − λR = 0.Solutions are just powers R = rα; plugging in,[α(α− 1) + α− λ]rα = 0 or α = ±

√λ.

If λ = 0, get linearly independent solutions 1 and ln r .Reject (for now) solutions involving ln r and r−α.

Page 8: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =

1 λ = 0cos(nx) λ = n2

sin(nx) λ = n2,

where n = 1,2,3, . . ..Equation for radial component is Euler equationr2R′′ + rR′ − λR = 0.Solutions are just powers R = rα; plugging in,[α(α− 1) + α− λ]rα = 0 or α = ±

√λ.

If λ = 0, get linearly independent solutions 1 and ln r .

Reject (for now) solutions involving ln r and r−α.

Page 9: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =

1 λ = 0cos(nx) λ = n2

sin(nx) λ = n2,

where n = 1,2,3, . . ..Equation for radial component is Euler equationr2R′′ + rR′ − λR = 0.Solutions are just powers R = rα; plugging in,[α(α− 1) + α− λ]rα = 0 or α = ±

√λ.

If λ = 0, get linearly independent solutions 1 and ln r .Reject (for now) solutions involving ln r and r−α.

Page 10: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Superposition of separated solutions:

u = A0/2 +∞∑

n=1

rn[An cos(nθ) + Bn sin(nθ)].

Satisfy boundary condition at r = a,

h(θ) = A0/2 +∞∑

n=1

an[An cos(nθ) + Bn sin(nθ)].

This is a Fourier series with cosine coefficients anAn andsine coefficients anBn, so that (using the known formulas)

An =1πan

∫ 2π

0h(φ) cos(nφ)dφ, Bn =

1πan

∫ 2π

0h(φ) sin(nφ)dφ.

Page 11: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Superposition of separated solutions:

u = A0/2 +∞∑

n=1

rn[An cos(nθ) + Bn sin(nθ)].

Satisfy boundary condition at r = a,

h(θ) = A0/2 +∞∑

n=1

an[An cos(nθ) + Bn sin(nθ)].

This is a Fourier series with cosine coefficients anAn andsine coefficients anBn, so that (using the known formulas)

An =1πan

∫ 2π

0h(φ) cos(nφ)dφ, Bn =

1πan

∫ 2π

0h(φ) sin(nφ)dφ.

Page 12: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Laplace’s equation in polar coordinates, cont.

Superposition of separated solutions:

u = A0/2 +∞∑

n=1

rn[An cos(nθ) + Bn sin(nθ)].

Satisfy boundary condition at r = a,

h(θ) = A0/2 +∞∑

n=1

an[An cos(nθ) + Bn sin(nθ)].

This is a Fourier series with cosine coefficients anAn andsine coefficients anBn, so that (using the known formulas)

An =1πan

∫ 2π

0h(φ) cos(nφ)dφ, Bn =

1πan

∫ 2π

0h(φ) sin(nφ)dφ.

Page 13: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Poisson formula

Inserting the Fourier coefficient formulas into the generalsolution,

u(r , θ) =1

∫ 2π

0h(φ)dφ

+∞∑

n=1

rn

πan

∫ 2π

0h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ.

Use the identitycos(nφ) cos(nθ) + sin(nφ) sin(nθ) = cos(n(θ − φ)), and reversethe order of summation and integration

u(r , θ) =1

∫ 2π

0h(φ)

{1 + 2

∞∑n=1

( ra

)ncos(n(θ − φ))

}dφ.

Page 14: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Poisson formula

Inserting the Fourier coefficient formulas into the generalsolution,

u(r , θ) =1

∫ 2π

0h(φ)dφ

+∞∑

n=1

rn

πan

∫ 2π

0h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ.

Use the identitycos(nφ) cos(nθ) + sin(nφ) sin(nθ) = cos(n(θ − φ)), and reversethe order of summation and integration

u(r , θ) =1

∫ 2π

0h(φ)

{1 + 2

∞∑n=1

( ra

)ncos(n(θ − φ))

}dφ.

Page 15: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Poisson formula, cont.

Sum is geometric series in disguise:

1 + 2∞∑

n=1

( ra

)ncos(n(θ − φ)) = 1 + 2Re

∞∑n=1

(rei(θ−φ)

a

)n

= 1 + 2Rerei(θ−φ)

a− rei(θ−φ)

=a2 − r2

a2 − 2ar cos(θ − φ) + r2 .

This results in Poisson’s formula:

u(r , θ) =

∫ 2π

0P(r , θ−φ)h(φ)dφ, P(r , θ) =

12π

a2 − r2

a2 − 2ar cos(θ) + r2 .

Page 16: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Poisson formula, cont.

Sum is geometric series in disguise:

1 + 2∞∑

n=1

( ra

)ncos(n(θ − φ)) = 1 + 2Re

∞∑n=1

(rei(θ−φ)

a

)n

= 1 + 2Rerei(θ−φ)

a− rei(θ−φ)

=a2 − r2

a2 − 2ar cos(θ − φ) + r2 .

This results in Poisson’s formula:

u(r , θ) =

∫ 2π

0P(r , θ−φ)h(φ)dφ, P(r , θ) =

12π

a2 − r2

a2 − 2ar cos(θ) + r2 .

Page 17: Laplace’s equation in polar coordinatesmath.arizona.edu/~kglasner/math456/SEPARATION_VARIABLES2.pdf · Laplace’s equation in polar coordinates ... Laplace’s equation in polar

Consequences of the Poisson formula

At r = 0, notice the integral is easy to compute:

u(r , θ) =1

∫ 2π

0h(φ)dφ, =

12π

∫ 2π

0u(a, φ)dφ.

Therefore if ∆u = 0, the value of u at any point is just theaverage values of u on a circle centered on that point.(“Mean value theorem")The maximum and minimum values of u are thereforealways on the domain boundary (this is true for any shapedomain).