Krzysztof A. Meissner Uniwersytet...

36
Conformal Standard Model Krzysztof A. Meissner Uniwersytet Warszawski Katowice, 14.05.2016 K.A. Meissner, Conformal Standard Model – p. 1/12

Transcript of Krzysztof A. Meissner Uniwersytet...

Page 1: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

Krzysztof A. Meissner

Uniwersytet Warszawski

Katowice, 14.05.2016

K.A. Meissner, Conformal Standard Model – p. 1/12

Page 2: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Theoretical drawbacks of SM• Hierarchy problem – quantum correctionsm2 ∼ Λ2 ⇒ why m ≪ MP?(with UV cutoff Λ = scale of ‘new physics’)

K.A. Meissner, Conformal Standard Model – p. 2/12

Page 3: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Theoretical drawbacks of SM• Hierarchy problem – quantum correctionsm2 ∼ Λ2 ⇒ why m ≪ MP?(with UV cutoff Λ = scale of ‘new physics’)

• CP breaking by CKM matrix too small toexplain baryogenesis

K.A. Meissner, Conformal Standard Model – p. 2/12

Page 4: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Theoretical drawbacks of SM• Hierarchy problem – quantum correctionsm2 ∼ Λ2 ⇒ why m ≪ MP?(with UV cutoff Λ = scale of ‘new physics’)

• CP breaking by CKM matrix too small toexplain baryogenesis

• no candidate for CDM

K.A. Meissner, Conformal Standard Model – p. 2/12

Page 5: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Theoretical drawbacks of SM• Hierarchy problem – quantum correctionsm2 ∼ Λ2 ⇒ why m ≪ MP?(with UV cutoff Λ = scale of ‘new physics’)

• CP breaking by CKM matrix too small toexplain baryogenesis

• no candidate for CDM

• Most popular proposal:SM −→ (p,C,N...)MSSM

K.A. Meissner, Conformal Standard Model – p. 2/12

Page 6: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Theoretical drawbacks of SM• Hierarchy problem – quantum correctionsm2 ∼ Λ2 ⇒ why m ≪ MP?(with UV cutoff Λ = scale of ‘new physics’)

• CP breaking by CKM matrix too small toexplain baryogenesis

• no candidate for CDM

• Most popular proposal:SM −→ (p,C,N...)MSSM

• 10 years ago the Conformal Standard Model(CSM) was proposed

K.A. Meissner, Conformal Standard Model – p. 2/12

Page 7: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 8: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

• Conformal symmetry ’softly broken’

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 9: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

• Conformal symmetry ’softly broken’

• see-saw mechanism for neutrinos

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 10: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

• Conformal symmetry ’softly broken’

• see-saw mechanism for neutrinos

• B − L unbroken

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 11: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

• Conformal symmetry ’softly broken’

• see-saw mechanism for neutrinos

• B − L unbroken

• the model viable to MP l

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 12: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Model

K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

• assumptions:

• Conformal symmetry ’softly broken’

• see-saw mechanism for neutrinos

• B − L unbroken

• the model viable to MP l

• no low energy supersymmetry

K.A. Meissner, Conformal Standard Model – p. 3/12

Page 13: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Modelthen

• SM unchanged in the usual sectors, only acouple of new parameters

K.A. Meissner, Conformal Standard Model – p. 4/12

Page 14: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Modelthen

• SM unchanged in the usual sectors, only acouple of new parameters

• vacuum stable up to MP l (in the SM unstableabove 1010 GeV)

K.A. Meissner, Conformal Standard Model – p. 4/12

Page 15: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Modelthen

• SM unchanged in the usual sectors, only acouple of new parameters

• vacuum stable up to MP l (in the SM unstableabove 1010 GeV)

• all masses logarithmically running

K.A. Meissner, Conformal Standard Model – p. 4/12

Page 16: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Conformal Standard Modelthen

• SM unchanged in the usual sectors, only acouple of new parameters

• vacuum stable up to MP l (in the SM unstableabove 1010 GeV)

• all masses logarithmically running

• a set of additional complex scalars:

• one scalar mixing with the usual Higgs

• several sterile scalars

• phases of scalar fields very light andextremely weakly coupledcandidates for DM

K.A. Meissner, Conformal Standard Model – p. 4/12

Page 17: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The ModelA. Latosinski, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• L = Lkin + L′:

L′ :=(

LiΦY Eij E

j + QiǫΦ∗Y Dij D

j + QiǫΦ∗Y Uij U

j +

+LiǫΦ∗Y νijν

jR + yMϕijN

iTCN j + h.c.)

−m2

Φ(Φ†Φ)−m2

φTr(ϕϕ⋆)

−λ1(Φ†Φ)2−2λ3Tr(ϕϕ

⋆)(Φ†Φ)− λ2 (Tr(ϕϕ⋆))2

−λ4Tr(ϕϕ⋆ϕϕ⋆)

K.A. Meissner, Conformal Standard Model – p. 5/12

Page 18: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The ModelA. Latosinski, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• L = Lkin + L′:

L′ :=(

LiΦY Eij E

j + QiǫΦ∗Y Dij D

j + QiǫΦ∗Y Uij U

j +

+LiǫΦ∗Y νijν

jR + yMϕijN

iTCN j + h.c.)

−m2

Φ(Φ†Φ)−m2

φTr(ϕϕ⋆)

−λ1(Φ†Φ)2−2λ3Tr(ϕϕ

⋆)(Φ†Φ)− λ2 (Tr(ϕϕ⋆))2

−λ4Tr(ϕϕ⋆ϕϕ⋆)

• φ = φij, YM ∼ O(1), Y ν

ij ∼ O(10−6) (see-saw)

mΦ,φ ∼ 100− 1000 GeV

K.A. Meissner, Conformal Standard Model – p. 5/12

Page 19: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model• Standard Model + very light neutrinos

+ heavy neutrinos (∼ 1 TeV))+ complex new scalars

K.A. Meissner, Conformal Standard Model – p. 6/12

Page 20: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model• Standard Model + very light neutrinos

+ heavy neutrinos (∼ 1 TeV))+ complex new scalars

• BEH mechanism for EW symm. 〈Φ〉 6= 0SSB of the lepton number symm. 〈ϕ〉 6= 0

K.A. Meissner, Conformal Standard Model – p. 6/12

Page 21: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model• Standard Model + very light neutrinos

+ heavy neutrinos (∼ 1 TeV))+ complex new scalars

• BEH mechanism for EW symm. 〈Φ〉 6= 0SSB of the lepton number symm. 〈ϕ〉 6= 0

• phases of φij – (pseudo)GBs of global leptonnumber symmetry

Li → eiαLi, Ei → eiαEi, νiR → eiανiR, ϕij → e−2iαϕij

K.A. Meissner, Conformal Standard Model – p. 6/12

Page 22: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model

A. Latosinski, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• we treat the cutoff scale Λ (∼ MP l) as a bona

fide physical scale and we define all ’bare’quantities at Λ

K.A. Meissner, Conformal Standard Model – p. 7/12

Page 23: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model

A. Latosinski, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• we treat the cutoff scale Λ (∼ MP l) as a bona

fide physical scale and we define all ’bare’quantities at Λ

• we have shown that if we impose vanishing ofquadratic divergences at one scale Λ then allmasses assumed small at Λ remain small inthe whole interval (MW ,MP l) – ’soft breaking’of conformal symmetry

K.A. Meissner, Conformal Standard Model – p. 7/12

Page 24: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model

A. Latosinski, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• we treat the cutoff scale Λ (∼ MP l) as a bona

fide physical scale and we define all ’bare’quantities at Λ

• we have shown that if we impose vanishing ofquadratic divergences at one scale Λ then allmasses assumed small at Λ remain small inthe whole interval (MW ,MP l) – ’soft breaking’of conformal symmetry

• in supersymmetry quadratic divergencesvanish identically by construction for all scales

K.A. Meissner, Conformal Standard Model – p. 7/12

Page 25: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

The Model• vanishing of quadratic divergences

fH =9

4g2w +

3

4g2y + 6λ1 + 12λ3 − 6y2t = 0 (at Λ)

fφ = 14λ2 + 4λ3 + 8λ4 − |yM |2 = 0 (at Λ)

K.A. Meissner, Conformal Standard Model – p. 8/12

Page 26: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Phenomenology• no other new particles at LHC except

standard Higgs 125 GeV (M1) and the newscalar (M2) – they are mixtures of the doubletand Tr(φij) with the mixing angle β

K.A. Meissner, Conformal Standard Model – p. 9/12

Page 27: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Phenomenology• no other new particles at LHC except

standard Higgs 125 GeV (M1) and the newscalar (M2) – they are mixtures of the doubletand Tr(φij) with the mixing angle β

• new scalar can eventually be observed (if β islarge enough) – see below

K.A. Meissner, Conformal Standard Model – p. 9/12

Page 28: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Phenomenology• no other new particles at LHC except

standard Higgs 125 GeV (M1) and the newscalar (M2) – they are mixtures of the doubletand Tr(φij) with the mixing angle β

• new scalar can eventually be observed (if β islarge enough) – see below

• baryogenesis through (resonant)

leptogenesis - η ∼ 10−10 very easy to obtain

from new phases in Y ijν

K.A. Meissner, Conformal Standard Model – p. 9/12

Page 29: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Phenomenology• no other new particles at LHC except

standard Higgs 125 GeV (M1) and the newscalar (M2) – they are mixtures of the doubletand Tr(φij) with the mixing angle β

• new scalar can eventually be observed (if β islarge enough) – see below

• baryogenesis through (resonant)

leptogenesis - η ∼ 10−10 very easy to obtain

from new phases in Y ijν

• phases of new scalars – very light, veryweakly coupled, good candidates for CDM

K.A. Meissner, Conformal Standard Model – p. 9/12

Page 30: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Phenomenology – examples

|yM | MN Mh′ tβ Γh′ h′ → OP h0 → OP

0.56 545 378 424 −0.3 0.59 0.69

0.54 520 378 360 −0.3 0.59 0.68

0.75 1341 511 1550 0.25 0.73 0.91

0.75 2732 658 3170 −0.16 0.74 0.99

0.82 2500 834 2925 0.15 0.74 0.98

K.A. Meissner, Conformal Standard Model – p. 10/12

Page 31: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary• assumption of ’softly broken’ conformal

symmetry replaces the usual assumption oflow energy supersymmetry

K.A. Meissner, Conformal Standard Model – p. 11/12

Page 32: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary• assumption of ’softly broken’ conformal

symmetry replaces the usual assumption oflow energy supersymmetry

• the model has several more parameters thanSM (MSSM 116) and uses quantumsymmetry breaking (conformal anomaly)

K.A. Meissner, Conformal Standard Model – p. 11/12

Page 33: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary• assumption of ’softly broken’ conformal

symmetry replaces the usual assumption oflow energy supersymmetry

• the model has several more parameters thanSM (MSSM 116) and uses quantumsymmetry breaking (conformal anomaly)

• vacuum is stable up to MP l

K.A. Meissner, Conformal Standard Model – p. 11/12

Page 34: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary• assumption of ’softly broken’ conformal

symmetry replaces the usual assumption oflow energy supersymmetry

• the model has several more parameters thanSM (MSSM 116) and uses quantumsymmetry breaking (conformal anomaly)

• vacuum is stable up to MP l

• baryogenesis (through resonant

leptogenesis) easily accommodates η ∼ 10−10

K.A. Meissner, Conformal Standard Model – p. 11/12

Page 35: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary

• CSM has definite (unique) predictions for LHC– besides the Higgs one new scalar with theHiggs BRs (plus invisible), other scalars andright-chiral neutrinos (masses ∼ 1 TeV) tooweakly coupled to be visible

K.A. Meissner, Conformal Standard Model – p. 12/12

Page 36: Krzysztof A. Meissner Uniwersytet Warszawskiindico.if.us.edu.pl/event/3/material/slides/1.pdfConformal Standard Model then • SM unchanged in the usual sectors, only a couple of new

Summary

• CSM has definite (unique) predictions for LHC– besides the Higgs one new scalar with theHiggs BRs (plus invisible), other scalars andright-chiral neutrinos (masses ∼ 1 TeV) tooweakly coupled to be visible

• extremely light and naturally weakly coupledphases – CDM candidates

K.A. Meissner, Conformal Standard Model – p. 12/12