JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date:...

29
Discrete Resonator Model Maxwell approach: DRM from eigenmode expansion example: Tesla cavity cavity signals empiric approach: network models for (quasi) periodic cavities field flatness and cavity spectrum field flatness and loss-parameter transient detuning summary/conclusions

Transcript of JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date:...

Page 1: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

Discrete Resonator Model

Maxwell approach:

DRM from eigenmode expansion

example: Tesla cavity → cavity signals

empiric approach:

network models for (quasi) periodic cavities

field flatness and cavity spectrum

field flatness and loss-parameter

transient detuning

summary/conclusions

Page 2: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

DRM from eigenmode expansion2

2t tµε µ∂ ∂∇×∇× + = −

∂ ∂E E J

2

ν ν νµεω∇×∇× =E E

( ) ( ) ( ), t tν να=E r E r

( ) ( )2

2

2t

t tν ν νµε ω α µ

∂ ∂+ = − ∂ ∂ E r J

12

dV Wν µ ν νµε δ= E E ( )( )

22 1

22t dV

t t

g t

ν ν ν

ν

ω α ∂ ∂→ + = − ∂ ∂ E J�����

( ) ( )( ) ( ) ( ) ( )( )12p p p pq t t g t q t tν νδ= − → = ⋅J r r r r E rɺ ɺ

( ) ( )2

2

0 2

1d du t i t

dt C dtω

→ + = −

C( )u t

( )i t

( ) ( ) ( )( )0

0

1cos

t

u t i t dC

τ ω τ τ= − −

beam

Page 3: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

0

0 0

g hd

dt

ν ν ν ν ν

ν ν ν

α ω αβ ω β

+ = − −

EoM + eigenmode approach

1 for 0ν ν ν

ν

ωω

= ∇× ≠B E

( ) ( ) ( )( ) ( ) ( )t t

t t

ν ν

ν ν

α

β

=

=

E E r

B B r

( )

( ) ( ) ( ){ }, ,

d

dt

dq t t

dt

µ µ

µ µ µ µ

=

= + ×

r v p

p E r v p B r

with

( ) ( ) ( )1

2

mW

g t dV qν

ν ν µ µδ= = −E J J v r r

( ) ( ) ,port~h t a b dAν ν ⊥− E E

,port~a b dAν νν

α ⊥+ E E port coupling

dynamic equations for

state quantities

“instantaneous” equations

all particles µ and

all modes ν

beam

port

Page 4: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

port modes in matrix formalism

( )

2 t

Wm

d

dt

ω

ω

+ = − −

+ = −

0 Dα α g V a - b

D 0β β 0

a b V D α

2 t

Wmd

dt

ω

ω

− = −

α αVV D D

β βD 0

beam g

port a = all forward waves

b = all backward waves

modes α = all E mode-amplitudes

β = all B mode-amplitudes

all coefficients can be calculated from EM eigenmode results

(but MWS does not support it)

the lossy eigenmode problem: , = =a 0 g 0

but it does not work too well if one considers not enough modes

example: TESLA cavity with modes below 2 GHz

Page 5: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

example: TESLA cavity

Xport =-193

∆xpen= 8

f/GHz Q/1E6

0 0

0.721865 0.000001

1.2763 88.2703

1.27838 22.6809

1.28157 10.5396

1.28551 6.32979

1.28973 4.41263

1.29373 3.41628

1.29701 2.87407

1.29917 2.57969

1.29991 4.97314

f/GHz Q/1E6

0 0

0.833513 0.000001

1.2763 44.2134

1.27838 11.3918

1.28157 5.31692

1.28551 3.21128

1.28973 2.25295

1.29373 1.7553

1.29701 1.48468

1.29917 1.33733

1.29991 2.57894

direct calculation (modes below 2GHz):

* compare:

Dohlus, Schuhmann, Weiland: Calculation of Frequency Domain Parameters Using 3D

Eigensolutions. Special Issue of International Journal of Numerical Modelling:

Electronic Networks, Devices and Fields 12 (1999) 41–68

improved calculation*:

Page 6: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

ph

ase

/deg

ph

ase

/deg

6 kHz

3 MHz1.5 GHz

phase of reflection coefficient:

Page 7: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

the improved method

( )

2 t

Wm

ω

ω −

= − −

+ = −

0 D V a bα α

D 0β β 0

a b V D α

ɶɶɶ ɶ

ɶ ɶ

ɶɶ ɶ

frequency domain (quantities with tilde)

( )( )ω

+ = −a b Z a bɶ ɶ ɶɶ ɶ ( ) 2 2

2 tjWν ν ν

ν

ωωω ω

=−Z v vɶwith

( )

( ) ( )

2 2 2 21

2 2Nt t

N

k u

j jj W W

j j

ν ν ν ν ν νν νν ν

ω ωωω ω ω ω

ω ω= >

= +− − Z v v v v

Z Z

ɶ

��������� ���������ɶ ɶ

known part unknown part

this part is smooth in the frequency range of the known part;

with some additional information one can find a good approximation

Page 8: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

f(PMC)/GHz

0

0.8612027

1.276303833

1.278377530

1.281569543

1.285508949

1.289734390

1.293732580

1.297014913

1.299167855

1.299908996

f(PEC)/GHz

0.429000747

1.276303633

1.278376664

1.281567291

1.285503885

1.289722730

1.293696870

1.296413920

1.297209500

1.299220100

1.299932200

example: TESLA cavity

( ) ( ) 0k PEC u PECZ j Zω ω+ =ɶ ɶ( )k PMCZ jω = ∞ɶ

one-port system: Zu can be calculated

for PEC resonance frequencies

Page 9: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

phase of reflection coefficient (again):

phase/d

eg

phase/d

eg

phase/d

eg

Page 10: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

excitation of the modes* 1 to 11 by an ultra-relativistic point particle (q=1C)

( ), 0

V/m

zE z r =

these are the first 11 modes without divergence (div E) in vacuum

modes 3-11 are related to the first band of monopole modes

zq

Page 11: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

port stimulation

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

t [sec] 10-3

-0.2

0

0.2

0.4

0.6

0.8

1-a vs time

t/Tg==n

t/Tg==n+1/4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

t [sec] 10-3

-1

-0.5

0

0.5

1b vs time

t/Tg==n

t/Tg==n+1/4 this is time domain, ~ 5E6 periods

stimulation ωg on resonance of “pi-mode”

blue curves are sampled at t = nTg

they can be interpreted as real part

red curves are sampled at t = nTg + Tg/4

they can be interpreted as real part

fill mode ln 2πτ τ=

a,b

Page 12: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

deviation from flat top

Page 13: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

spectrum of “pickup” signal and stimulation

a,b

“pickup” signal

Page 14: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

spectrum of “pickup” signal and LP filter

a,b

“pickup” signal after LP filter

Page 15: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

a,b

spectrum of “pickup” signal and BP filter“pickup” signal after BP filter

Page 16: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

empiric approach:

network models for (quasi) periodic cavities

geometry

1 resonance, 2x1 ports, electric coupling

2 resonances, 2x2 ports, magnetic coupling

K. Bane, R. Gluckstern: The Transverse Wakefield of a Detunded

X-Band Accelerator Structure, SLAC-PUB-5783, March 1992

1 resonance, 2x1 ports, magnetic coupling

Page 17: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

approach from network theory

a,b

c1 c2 c3 c4 c5 c6 c7 c8 c9b1 b2… … …… … … …… ……

b1, b2: boundary blocks with n respectively n+1 ports

c1, c2, … c9: cell blocks with 2n ports

simplifications: c2, … c8 (or c1, ... c9) are identical and symmetric

use periodic solutions of 3d system to characterize cell blocks

special treatment of boundary blocks

Page 18: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

a,b

system with beam

zq

beam ports with delay are connected in series

c1 c2 c3 c4 c5 c6 c7 c8 c9b1 b2… … …… … … …… ……

τ 2τ 3τ 4τ 5τ 7τ6τ 8τ 9τ

τia(t)

ib(t)

ua(t)

ub(t)

( ) ( )( ) ( )

b a

b a

i t i t

u t u t

ττ

= −

= −

Page 19: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

c… …

the general symmetric 2n-port network

1

2

3

n

n+1

n+2

n+3

2n

( ) 2 21

M jj jν

ν ν

ωω ωω ω ∞

=

= +−Z A Aɶ

( )( )

( )

( )

( )( )

( )

1 1

2 2

2 2n n

u j i j

u j i jj

u j i j

ω ωω ω

ω

ω ω

=

Z

ɶɶ

ɶɶɶ

⋮ ⋮

ɶɶ

with

( ) ( )t t t tν νν ν ν ν ν

ν ν

= +

=

r sA r s s r

s r

A ⋯

and

Page 20: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

9

9

ii

i

f f

F F∆ = −

i∆

RSD

RSD is a measure for the change of the mode spectrum of one cavity compared

to itself

relative spectral deviation

Page 21: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

field flatness and mode spectrum

Is there a direct relation between the field flatness of the accelerating

mode and the resonance frequencies of modes in the same band?

test it for a simpler problem:

even simpler:1iɶ

2iɶ

1C2C

cC

1 1L = 2 1L =

1 2

1 2

1.25 1 11 1,

5 1 12 2c

C C

C

= = − → = = =

i iɶ ɶ

1 2 1 2

110 10 1 1 3, , 10 3 ,

2 211 3 9 3 3 1cC C C

−= = = → = = − − i iɶ ɶ

no: both setups have the same eigen-frequencies, but different flatness/eigenvectors

1

2

4 5

6 5

ω

ω

=

=

1

2

i

i

=

ɶɶ

Page 22: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

field flatness and loss parameter

again the discrete network:

loss-parameter:( ) ( )

2 212 2

2 2 2 2

0 0

1 11 1

4 2 2tot

C i iVk

W L i C iν

ν νν ν νπ

ν ν

ωω ω

−− −= ≈ ≈

ɶ ɶ

ɶ ɶ

( ) ( )1 1i xν

ν ν− +ɶ ∼

pi-mode

deviation from flat field

1 9ν = ⋯

( )( )

2

2 2

1 1

19 1

xk

xx

ν

νν

+≈

++

∼ 0xν ≈if

for σx = 0.1 the loss parameter is reduced by only 1%!

Page 23: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

simulation for network with tolerances

Page 24: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

correlation between field flatness and relative spectral deviation

RS

D

Page 25: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

time dependent detuning

( )

2 t

d

dt

ω

ω

= − −

+ = −

0 Dα α V a - b

D 0β β 0

a b V α

( )( )

( )( )

( )2 t

t t

t

t

d

dt

ω

ω

= − −

+ = −

0 Dα α V a - b

D 0β β 0

a b V α

?

for instance no excitation (a = b) →( )

( )

0 0

0

0

t

t

d

d

ω

ω

τ τ

τ τ

= −

0 Dαα

ββD 0

?

This would mean all the modes are independently ringing, there is no mode

conversion.

Page 26: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

( )( )

( )( )

t

t t

t t

d

dt

ω

ω

= + −

0 R 0 D 0 Rz q

R 0 D 0 R 0

example:

with 1

2

0

ωω

=

D

( ) ( ) ( )( ) ( )

cos sin

sin cos

t tt

t t

ϕ ϕϕ ϕ

= −

R

system matrix is anti symmetric → energy conservation with tW z z∼

eigenvalues are time invariant { }1 2,j jλ ω ω= ± ±

but eigenvectors are time dependent

next slide:

numerical calculation for

the effect of mode conversion is weak if the time scale of ϕ(t) is long compared

to the resonances

1 21.98 , 2.02ω π ω π= =

Page 27: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

-100 -80 -60 -40 -20 0 20 40 60 80 100-1

-0.5

0

0.5

1

z1(t)

-100 -80 -60 -40 -20 0 20 40 60 80 100-0.1

-0.05

0

0.05

0.1

z2(t)

-100 -80 -60 -40 -20 0 20 40 60 80 100

t

0

0.02

0.04

0.06

0.08

0.1

(t)

no excitation

0=q

initial state:

ω1 resonance

is ringing

final state:

both resonances

are ringing

Page 28: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM

summary/conclusion

• eigenmode expansion is effective to analyse cavity signals

in the frequency range of the first monopole band →signals seen by couplers and pickups

• pickups are more sensitive to non-accelerating monopole

modes than the beam

• eigenmode expansion is standard for long range effects

empiric approach: discrete network

Maxwell approach: field eigenmode expansion

• discrete network models allow qualitative insight

• it is easy to analyze discrete models and to consider random effects

• it is difficult to relate network parameters to geometric properties

and imperfections; it is in principle possible

• loss-parameter is very insensitive to field flatness; but the peak field

is sensitive!

• no sharp correlation between relative spectral deviation and flatness

• it is possible to calculate time dependent resonance, but modeling

requires (some) caution

Page 29: JMD 4DESY-TEMF DRM · 2019. 12. 9. · Title: JMD_4DESY-TEMF_DRM Author: dohlus Created Date: 12/6/2019 9:48:18 AM