J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf ·...

23
J and h c radiative decays to η c on the lattice F.Sanfilippo In collaboration with D. Becirevic Laboratoire de Physique Théorique Université Paris Sud XI, Orsay, France Based on “ Lattice QCD study of the radiative decays J η c γ and hc η c γD.Becirevic and F.Sanfilippo, arXiv:1206.1445, JHEP 1301 (2013) 028 April 25, 2013

Transcript of J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf ·...

Page 1: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

J/ψ and hc radiative decays to ηc on the lattice

F.SanfilippoIn collaboration with D. Becirevic

Laboratoire de Physique Théorique

Université Paris Sud XI, Orsay, France

Based on “Lattice QCD study of the radiative decays J/ψ → ηcγ and hc → ηcγ”D.Becirevic and F.Sanfilippo, arXiv:1206.1445, JHEP 1301 (2013) 028

April 25, 2013

Page 2: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Summary

J/ψ → ηcγ radiative decay1 Γ (J/ψ → ηcγ) experimental situation2 Theoretical puzzle3 Lattice computation

hc → ηcγ radiative decay1 Γ (hc → ηcγ) lattice determination2 Prediction for Γhc

New: decays of radially excited statesPreliminary study of ψ′ → ηcγ and ηc (2S)→ J/ψγ

Page 3: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

J/ψ → ηcγ radiative decay

ηc

J/ψ

c

Current experimental situation is unclearΓ (J/ψ → ηcγ)PDG = (1.58± 0.37) keV:

Crystal Ball (’86): (1.18± 0.33) keVCLEO (’09): (1.91± 0.28± 0.03) keV

PDG heavily influenced by Crystal Ball0.5 1 1.5 2 2.5

Γ(J/Ψ->ηcγ) keV

KEDR (arXiv:1002.2071): (2.17± 0.14± 0.37) keV(preliminary) final result expected this yearBESIII will hopefully clarify the situation

Page 4: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

J/ψ → ηcγ radiative decay

Theoretical predictions are inconclusiveDispersive bound from Γ (ηc → 2γ):Γ (J/ψ → ηcγ) < 3.2 keV [M.A. Shifman, Z. Phys. C 6 (’80)]

Two QCD sum rule calculations gave two different results:

∼ (1.7 ± 0.4) keV [A.Y. Khodjamirian, Sov. J. Nucl. Phys. 39 (’84)]∼ (2.6 ± 0.5) keV [Beilin and Radyushkin, Nucl. Phys. B 260 (’85)]

QCD eff. theory

(1.5 ± 1.0) keV [N.Brambilla et al, PRD73 (’06)](2.14 ± 0.40) keV [A.Pineda, J.Segovia, arXiv:1302.3528]

Potential Quark Models:

∼ 3.3 keV [M.B Voloshin, Prog.Part.Nucl.Phys. 61 (’07)]∼ 2.85 keV [E. Eichten et al., RMP80 (’08)]

Lattice QCD computationsQuenched and single lattice spacing: 2.51(8) keV[J.J Dudek et al., PRD 79 (’09)]

Unquenched but still single lattice spacing: 2.77 (5) keV[Chen et. al, PRD 84 (’11)]

Both results obtained at large negative q2’s , then extrapolated to q2 = 0

Page 5: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Lattice QCD

Desired featuresContinuum: Several lattice spacings to take continuum limitRenormalization: Non perturbativeMomentum: Work directly at q2 = 0 to avoid the q2 extrapolationUnquenching: Include 2 physical light, strange and charm dynamical quarks

What we currently have...Continuum: 4 different lattice spacings (a ∈ [0.054; 0.100] fm)Renormalization: Non perturbative (RI-MOM)Momentum: Work at q2 = 0 using twisted boundary conditionsUnquenching: Only 2 dynamical light quarks (Mπ ∈ [280; 500] MeV)

Wilson regularization of QCD with twisted mass term (tmQCD)

QCD gauge field configurations produced by ETM collaboration

Page 6: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Form factor computation

Γ (J/ψ → ηcγ) ∝ |〈ηc |Jem| J/ψ〉|2q2=0

Three points functions

C (3)ij (t)=〈Tr

[Sc(y ;0)γiSc(0,x)γjS

~pc (x ,y)γ5

]〉

at intermediate times:C (3)

ij (t) '0�t�T

ZJψZηc exp[(Eηc−MJ/ψ)t]〈ηc |Jemj |(J/ψ)i〉

c

Γ γ5

~0; 0(∑~x), t

t0

cγi

~p

Two points functions

C (2)(t)=〈Tr[Sc(0,0;~x ,t)γ5Sc(~x ,t;~0,0)γ5]〉 =at large times:'

t→∞Zηc 2 exp(−Mηc t)

and similarly for ZJ/ψ, MJ/ψ.

c

γ5 γ5

~0; 0(∑~x), t

t0

Page 7: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Matrix element⟨ηc∣∣Jem

j

∣∣ (J/ψ)i⟩

(example)

Determine Z and M from 2 points functions and combine with C (3):

R(t)≡C(3)ij (t)

ZJψZηc exp[(Eηc−MJ/ψ)t]'

0�t�T〈ηc |Jem

j |(J/ψ)i〉

0 10 20

t

0.15

0.20

0.25

R

T

0 << t << T

〈ηc |Jemj |(J/ψ)i〉 on the plateau of R (t)

Page 8: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Continuum extrapolation of⟨ηc∣∣Jem

j

∣∣ (J/ψ)i⟩

0 0.002 0.004 0.006 0.008 0.01

a2 (fm)

1.2

1.4

1.6

1.8

2<

ηc|j

em|J

/ψ>

form

fac

tor

a = 0.098 fma = 0.085 fma = 0.067 fma = 0.054 fmPhysical extrap.

Page 9: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Numerical result

Our final resultPutting everything together we get: Γ(J/ψ → ηcγ) = 2.58 (13) keVOur value is clearly:

larger than Crystal Ball(’86) 1.18(33) keVcompatible with CLEO(’09) 1.91(30) keV, and KEDR(’10) 2.17(40) keV

Recent developmentRecently HPQCD collab. (PRD86 (2012) 094501) reported result:

using Staggered quarks (HISQ regularization)including also dynamical strange quark

They show that 〈ηc |Jemj |(J/ψ)i〉 does not depend on msea

s

Excellent agreement with our result in the continuum limit:

ΓJ/ψ→ηcγ = 2.49 (19) keV

Page 10: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Is the J/ψ → ηcγ puzzle solved?

0

2

4

ΓJ/

Ψ->

ηc (

keV

)

Cryst.Ball(86)

CLEO(09)

KEDR (prel)

Shifman(80)

Khodjamirian(84)

Beilin(85)

Brambilla(06)

Pineda(13)

Voloshin(07)

Eichten(08)

Dudek(09)

Chen(11)

This work

HPQCD(12)

Exp.results Non lattice predictions

Eff

Lattice

Sumrules theories

Pot.quark

PD

G

Cont

NoCont

Two different lattice approaches give the same result in the continuumOn the theory side the problem is (almost) fully solvedThis becomes a precision test of QCDThe experimental situation needs to be clarified

Page 11: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

hc → ηcγ radiative decay

hc : charmonium JPC = 1+− statehc only recently observed at CLEO (2005)Br (hc → ηcγ) = 53 (7) % at BESIII 2010

ηc

c

c̄hc

Open questions on the initial stateLifetime of hc not measured yetNo QCD based estimate: no QCDSR, no effective theory

As before, we can provide the first unquenched LQCD result in thecontinuum: Γ (hc → ηcγ) is a prediction!

Page 12: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

hc → ηcγ radiative decay

0 0.002 0.004 0.006 0.008 0.01

a2 (fm)

-0.8

-0.76

-0.72

-0.68

-0.64

-0.6

-0.56

-0.52

-0.48

c|jem

|hc>

fo

rm f

acto

r

a = 0.098 fma = 0.085 fma = 0.067 fma = 0.054 fmPhysical extrap.

Continuum extrapolation of <hc|j

em|η

c> form factor

We get:Γ(hc → ηcγ) = 0.72(5) MeV

BESIII measured:Br(hc → ηcγ) = (53± 7) %

We can predict hc lifetime:

Γhc = Γ(hc→ηcγ)Br(hc→ηcγ)

1.37(23) MeV

Very recently (Confinement ’12) BESIII presented preliminary results for Γhc :

Γinclhc= 0.73(45)(28) MeV, Γexclhc

= 0.70(28)(22) MeV

Page 13: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Decays of radially excited charmomium (preliminary)

Radiative decays of an excited states to the ground stateEasier to measure for experimentalists

more energetic photons easier to recognizemore phase space w.r.t ground state decays

Harder for theorists:

models and effective theories predictions are unreliable(very sensitive to high order relativistic correction)lattice: reliable separation of excitation and ground state is difficult

Spectral decomposition of two points correlation function

C2pt (t) = a1e−M1t + a2e−M2t + a3e−M3t + ...

How to separate different states?→ we use several operators with the same quantum numbersSmeared operators: operators with different spatial distribution→ different couplings to states

Page 14: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Spectral decomposition of 2pts pseudoscalar corr. function

0 2 4 6 8 10 12 14 16 18 20 22

t/a

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

C(t)=a1e

-Mη(1S)

t+a

2e

-Mη(2S)

t+a

3e

-Mη(3S)

t...

Page 15: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

ψ′ → ηc (1S) γ

0 5 10 15 20-0.1

0

0.1

0.2

0.3

<J/ψ|Jem

|ηc(1S)>

<ψ’|Jem

|ηc(1S)>

Form factor for ψ′ → ηcγ very small: negligible decay widthCompatible with findings of J.J Dudek et al, PRD 79 (’09)In line with experiments, that finds very small Γ (ψ′ → ηcγ)

Page 16: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

ηc (2S)→ J/ψγ

0 5 10 15 20-0.1

0

0.1

0.2

0.3

<ηc(1S)|J

em|J/ψ>

<ηc(2S)|J

em|J/ψ>

Form factor for ηc (2S)→ J/ψγ sizable: non negligible decay widthNever explored in lattice before, never measured in experimentsCaveat: no continuum limit

Page 17: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Conclusions

Results

First full determination of J/ψ → ηcγ, hc → ηcγ form factors:

high statistics unquenched simulations

continuum extrapolation under control

non-perturbatively renormalized

Preliminary study of excited-to-ground state decays

Main message from Lattice QCD side

Assessed theoretical estimate of Γ (J/ψ → ηcγ)

Provided a prediction for hc lifetimeIndication of sizable Γ (ηc (2S)→ J/ψγ)

Main message for experimentalists

Radiative decays of charmonium could become a precision test of QCD but

Indispensable to clarify Γ (J/ψ → ηcγ)

Improve the measurement of Γhc

Measure Γ (ηc (2S)→ J/ψγ)

Page 18: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Backupslides

Page 19: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Dependence on light quark mass

0 10 20 30 40 50 60

ml

MS,2GeV (MeV)

1.2

1.4

1.6

1.8

2<

J/Ψ

|jem

|ηc>

form

fac

tor

a = 0.098 fma = 0.085 fma = 0.067 fma = 0.054 fmPhysical extrap.

Lattice data

Insensitive to variation of the light sea quark mass msea` (expected because mval

c � msea` )

Expected insensitivity to the dynamical strange quark (mc � ms � msea` )

Page 20: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Can we do charm physics on current lattices?

Some back of the envelop calculationLattice spacings: a ∼ 0.050÷ 0.100 fm, 1/a ∼ 2÷ 4 GeVCharmed meson mass: MD± = 1.87 GeV, MJ/Ψ = 3.1 GeV

To study charm physics on such lattices seem questionable but...

Some deeper calculationIn the free theory the cut off is given by pmax = π/a ∼ 6÷ 12 GeV!Seems to be almost good also to study b quark...

Cutoff of interacting theory is unknown: only actual computations can teach us

How to keep the situation under control?Having 4 different lattice spacing, and O (a) improved theory allows:

to drop coarsest lattice spacing and check for stability of a→ 0 limitto assess the convergence ∝ a2 to the continuum limit: Φlatt = Φcont. + Φ′a2

Page 21: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Determination of the charm quark mass

Wick contraction

C (τ) =∑

~x

⟨O† (~x , τ) O

(~0, 0)⟩

=Wick

Tr[ΓSl(~x , τ ;~0, 0

)ΓSc

(~0, 0;~x , τ

)]

Quark propagator calculationSolving Dirac equation on gauge background provides full quark propagator

Dq (y,x) · Sq (x , 0) = δy ,0 Dq =( 1

2κ + K [U])1 + imqγ5τ3

0 0

x x

In practiceD operator and the propagator S are large matrices (O

(109) lines)

Solving Dirac equation requires large amount of CPU resources

Page 22: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Other two precise tests of SM

Hyperfine splitting ∆c=MJ/Ψ−Mηc

0 0.002 0.004 0.006 0.008 0.01

a2 (fm)

0.1

0.12

0.14

0.16

0.18

0.2

∆c

a = 0.098 fma = 0.085 fma = 0.067 fma = 0.054 fmPhysical extrap.

Continumm extrapolation of ∆c

106

108

110

112

114

116

118

120

122

124

126

∆c (

MeV

)

PDG 2012This workHPQCD

BESIII (ICHEP ’12)

J/Ψ→e+e− decay constant

0 0.002 0.004 0.006 0.008 0.01

a2 (fm)

0.3

0.35

0.4

0.45

0.5

0.55

f J/Ψ

a = 0.098 fma = 0.085 fma = 0.067 fma = 0.054 fmPhysical extrap.

Continuum extrapolation of fJ/Ψ

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

ΓJ/

Ψ->

e+e

- (M

eV

)

PDG 2012This workHPQCD

Page 23: J and hc radiative decays to c on the latticeindico.ihep.ac.cn/.../65/material/slides/0.pdf · April25,2013. Summary J= ! c radiativedecay 1 ( J= ! c) experimentalsituation 2 Theoreticalpuzzle

Two points correlation function computation

Combine 2 propagators with suitable Dirac structures

0

x

0

x

0 x

Effective massWhere ground state dominate, correlation decays exponentially:

C (τ) −→τ→∞

Z 2De−MDτ

The derivative of its logarithm (effective mass) is a constant:

Meff (τ) ≡ −∂τ logC (τ) −→τ→∞

MD

Deviation from constant behavior of MD (τ) reveals excited statesDerivative to be computed numerically: ∂τ = f (τ + 1)− f (τ)