Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique...

35
Isogeometric Analysis for Maxwell’s equation Armin Fohler 12th January, 2017 Armin Fohler Isogeometric Analysis for Maxwell’s equation

Transcript of Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique...

Page 1: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Isogeometric Analysis for Maxwell’s equation

Armin Fohler

12th January, 2017

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 2: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Section 1

Introduction

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 3: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Maxwell’s Equation

∂B

∂t+ curlE = 0, (Faraday’s law)

∂D

∂t− curlH = −J, (Ampere’s law)

divD = ρ, (electrical Gauss law)

divB = 0, (magnetic Gauss law).

Material laws

D = εE ,

B = ν(H + M),

J = σE .

Quantities

B .. mag. field J .. el. current

E .. el. field ρ .. el. charge density

D .. el. displacement ε .. el. permittivity

H .. mag. induction ν .. mag. permeability

M .. magnetization σ .. conductivity

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 4: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Figure: Motor sector

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 5: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

References I

A. Buffa, J. Rivas, G. Sangalli, and R. Vazquez.Isogeometric discrete differential forms in three dimensions.SIAM Journal on Numerical Analysis, 49(2):818–844, 2011.

A. Buffa, G. Sangalli, and R. Vazquez.Isogeometric methods for computational electromagnetics:B-spline and t-spline discretizations.J. Comput. Phys., 257:1291–1320, January 2014.

A. Buffa, G. Sangalli, and R. Vazquez.Isogeometric analysis in electromagnetics: B-splinesapproximation.Computer Methods in Applied Mechanics and Engineering,199(17–20):1143 – 1152, 2010.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 6: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

References II

Jie Li, Daniel Dault, Beibei Liu, Yiying Tong, andBalasubramaniam Shanker.Subdivision based isogeometric analysis technique for electricfield integral equations for simply connected structures.Journal of Computational Physics, 319:145 – 162, 2016.

Ahmed Ratnani and Eric Sonnendrucker.An arbitrary high-order spline finite element solver for the timedomain maxwell equations.Journal of Scientific Computing, 51(1):87–106, 2012.

R. Vazquez and A. Buffa.Isogeometric analysis for electromagnetic problems.IEEE Transactions on Magnetics, 46(8):3305–3308, Aug 2010.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 7: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Eigenvalue Problem

Find ω ∈ R and u ∈ H0(curl; Ω) such that∫Ωµ−1 curl u curl v = ω2

∫Ωεu · v ∀v ∈ H0(curl; Ω).

Source Problem

Find u ∈ H0(curl; Ω) such that∫Ωµ−1 curl u · curl v − ω2

∫Ωεu · v =

∫Ωf · v ∀v ∈ H0(curl; Ω).

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 8: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

physical Domain Ω, and Parametrization F

Ω ⊂ R3: bounded, simply connected Lipschitz domain with

∂Ω: connected boundary

F : Ω→ Ω: continuously differentiable geometrical mapping

with continuously differentiable inverse

Sobolev spaces

H(curl; Ω) :=v ∈ L2(Ω)| curl(v) ∈ L2(Ω)

H(div; Ω) :=

v ∈ L2(Ω)| div(v) ∈ L2(Ω)

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 9: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

De Rham Complex

R −→H1(Ω)grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)div−−→ L2(Ω) −→ 0

R −→H1(Ω)grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)div−−→ L2(Ω) −→ 0

Exact for Ω (and Ω) simply connected.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 10: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Pullback operators

ι0(φ) := φ F, φ ∈ H1(Ω)

ι1(u) := (DF)T (u F), u ∈ H(curl; Ω)

ι2(v) := det(DF)(DF)−1(v F), v ∈ H(div; Ω)

ι3(ϕ) := det(DF)(ϕ F), ϕ ∈ L2(Ω)

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 11: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

De Rham Complex

R −→H1(Ω)grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)div−−→ L2(Ω) −→ 0

ι0 ↑ ι1 ↑ ι2 ↑ ι3 ↑

R −→H1(Ω)grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)div−−→ L2(Ω) −→ 0

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 12: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Section 2

B-Splines

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 13: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Notation

Σ := ξ1, ..., ξn+p+1 p-open knot vector

Σ′ := ξ2, ..., ξn+pBi ,p(ξ) B-spline functions

Sp(Σ) := spanBi ,p, i = 1, .., n

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 14: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Anchors and Greville Sites

Anchors Greville sites

ξA :=

ξi+ p+12

p odd,ξi+ p

2+ξi+ p

2 +1

2 p evenγA =

ξi+1+...+ξi+p

p

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 15: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Multivariate Case

Σi := ξi ,1, ..., ξi ,ni+pi+1Ap1,...,pd (Σ1, ...,Σd) := Ap1(Σ1)× ...×Apd (Σd)

BAp1,...,pd

(ξ) = BA1p1

(ξ1)...BAdpd

(ξd)

Sp1,...,pd (Σ1, ...,Σd) := spanBAp1,...,pd

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 16: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Spline spaces will be high-order extensions of classical low orderNedelec hexahedral finite elements

Discrete Spaces

X 0h := Sp1,p2,p3 (Σ1,2,3),

X 1h := Sp1−1,p2,p3 (Σ′1,Σ2,3)× Sp1,p2−1,p3 (Σ1,Σ

′2,Σ3)× Sp1,p2,p3−1(Σ1,2,Σ

′3),

X 2h := Sp1,p2,3−1(Σ1,Σ

′2,3)× Sp1−1,p2,p3−1(Σ′1,Σ2,Σ

′3)× Sp1,2−1,p3 (Σ′1,2,Σ3),

X 3h := Sp1−1,p2−1,p3−1(Σ′1,Σ

′2,Σ′3).

Discrete De Rham complex

R −→ X 0h

grad−−→ X 1h

curl−−→ X 2h

div−−→ X 3h −→ 0

This sequence is exact.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 17: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Spaces on the Physical domain

Discrete De Rham complex

R −→X 0h

grad−−→ X 1h

curl−−→ X 2h

div−−→ X 3h −→ 0

ι0 ↑ ι1 ↑ ι2 ↑ ι3 ↑

R −→X 0h

grad−−→ X 1h

curl−−→ X 2h

div−−→ X 3h −→ 0

Discrete Spaces

X 0h := φ : ι0(φ) ∈ X 0

h ,

X 1h := u : ι1(u) ∈ X 1

h ,

X 2h := v : ι2(v) ∈ X 2

h ,

X 3h := ϕ : ι3(ϕ) ∈ X 3

h .

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 18: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Projectors onto the B-spline space

Πp1,p2,p3φ :=

n1−1,n2−1,n3−1∑i1=2,i2=2,i3=2

(λi1,i2,i3φ)Bi1,i2,i3

where λpi are the dual basis functionals in each variable:

λpi Bpj = δij

Spline preserving property

Π0φh := φh, ∀φh ∈ X 0h

Π1uh := uh, ∀uh ∈ X 1h

Π2vh := vh, ∀vh ∈ X 2h

Π3ϕh := ϕh, ∀ϕh ∈ X 3h

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 19: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Projectors onto the B-spline space

R −→H1(Ω)grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)div−−→ L2(Ω) −→ 0

Π00 ↓ Π1

0 ↓ Π20 ↓ Π3

0 ↓

R −→X 0h

grad−−→ X 1h

curl−−→ X 2h

div−−→ X 3h −→ 0

The same holds also for the physical domain.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 20: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Approximation estimate

Under the assumption γd ≥ αd , d = 1, 2, 3, the following estimateshold:

‖φ− Π0φ‖H l (Ω) ≤ Chs−l‖φ‖Hs(Ω) ∀φ ∈ H1 ∩ Hs(Ω),

0 ≤ l ≤ s ≤ p + 1, l ≤ α + 1

‖u− Π1u‖H l (Ω) ≤ Chs−l‖u‖Hs(Ω) ∀u ∈ H(curl; Ω) ∩Hs(Ω),

0 ≤ l ≤ s ≤ p, l ≤ α‖v − Π2v‖H l (Ω) ≤ Chs−l‖v‖Hs(Ω) ∀v ∈ H(div; Ω) ∩Hs(Ω),

0 ≤ l ≤ s ≤ p, l ≤ α‖ϕ− Π3ϕ‖H l (Ω) ≤ Chs−l‖ϕ‖Hs(Ω) ∀ϕ ∈ L2(Ω) ∩ Hs(Ω),

0 ≤ l ≤ s ≤ p, l ≤ α.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 21: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Approximation estimate (Energy Norm)

The following inequalities hold for 0 ≤ l ≤ s ≤ p, l ≤ α:

‖φ− Π0φ‖H l+1(Ω) ≤ Chs−l‖φ‖Hs+1(Ω)

∀φ ∈ Hs+1(Ω),

‖u− Π1u‖Hl (curl;Ω) ≤ Chs−l‖u‖Hs(curl;Ω)

∀u ∈ Hs(curl; Ω),

‖v − Π2v‖Hl (div;Ω) ≤ Chs−l‖v‖Hs(div;Ω)

∀v ∈ Hs(div; Ω),

‖ϕ− Π3ϕ‖H l (Ω) ≤ Chs−l‖ϕ‖Hs(Ω)

∀ϕ ∈ Hs(Ω).

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 22: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Multi-patch domain

Conformity across the interface

If the De-Rham complex is fulfilled on each patch:

trace continuity on X 0h

tangential trace continuity on X 1h

normal trace continuity on X 2h

no continuity on X 3h

Geometrical Conformity

On each non-empty patch interface Γ the spaces X 0h,k1

and X 0h,k2

coincide, as the corresponding bases do.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 23: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Section 3

T-Splines

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 24: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Notation

Σi := ξi ,1, ..., ξi ,ni+pi+1Ap1,...,pd (Σ1, ...,Σd) := Ap1(Σ1)× ...×Apd (Σd)

BAp1,...,pd

(ξ) = B[ΣA1 ](ξ1)...B[ΣA

d ](ξd)

Tp1,...,pd (M) := spanBAp1,...,pd

: A ∈ Ap1,...,pd (M)

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 25: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

2D De Rham Complex

We have to modify the mesh not only at the boundary but also atthe T-junctions.

Y 0h := Tp,p(M0)

Y 1h := Tp−1,p(M1

1)× Tp,p−1(M12)

Y 1∗h := Tp,p−1(M1

2)× Tp−1,p(M11)

Y 2h := Tp−1,p−1(M2)

De Rham Complex

R −→ Y 0h

grad−−→ Y 1h

curl−−→ Y 2h −→ 0

R −→ Y 0h

curl−−→ Y 1∗h

div−−→ Y 2h −→ 0

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 26: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

3D De Rham Complex

X 0h := Y 0

h × Sp(Σ)

X 1h := [Y 1

h × Sp(Σ)]× [Y 0h × Sp−1(Σ′)]

X 2h := [Y 1∗

h × Sp−1(Σ′)]× [Y 2h × Sp(Σ)]

Y 3h := Y 2

h × Sp−1(Σ′)

De Rham Complex

R −→ X 0h

grad−−→ X 1h

curl−−→ X 2h

div−−→ X 3h −→ 0

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 27: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Section 4

Examples

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 28: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Eigenvalue Problem

Find ω ∈ R and u ∈ H0(curl; Ω) such that∫Ωµ−1 curl u curl v = ω2

∫Ωεu · v ∀v ∈ H0(curl; Ω).

Aim is to show that there are no spurious modes with T-splines.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 29: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Results: Square

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 30: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Results: Square

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 31: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Results: L-Shape Domain 3d

With suitable refinement due to the reentrant edge:

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 32: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Results: L-Shape Domain 3d

The method is free of spurious modes.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 33: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Source Problem

Find u ∈ H0(curl; Ω) such that∫Ωµ−1 curl u · curl v − ω2

∫Ωεu · v =

∫Ωf · v ∀v ∈ H0(curl; Ω),

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 34: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Results: Three quarters of a cylinder

T- and B-spline of degree 3.

Armin Fohler Isogeometric Analysis for Maxwell’s equation

Page 35: Isogeometric Analysis for Maxwell’s equation · Subdivision based isogeometric analysis technique for electric eld integral equations for simply connected structures. Journal of

Thank you for your attention!

Armin Fohler Isogeometric Analysis for Maxwell’s equation