Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf ·...

58
Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit¨ at Darmstadt Erice, September 27, 2013 Joint work with Malcolm Sabin and Tobias Ewald

Transcript of Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf ·...

Page 1: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Analysis of Geometric Subdivision Schemes

Ulrich Reif

Technische Universitat Darmstadt

Erice, September 27, 2013

Joint work with Malcolm Sabin and Tobias Ewald

Page 2: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Standard schemes

binary

linear

local

uniform

real-valued

periodic grid

p`+12i+σ =

∑j≤n

ajσp`i+j , σ ∈ {0, 1}, i ∈ Z, p`i ∈ R.

Ulrich Reif 27.09.2013 2 / 29

Page 3: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ =

∑|j |≤n

ajσ(`)p`i+j , σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ R.

Ulrich Reif 27.09.2013 3 / 29

Page 4: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ =

∑|j |≤n

ajσ(i)p`i+j , σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ R.

Ulrich Reif 27.09.2013 3 / 29

Page 5: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ =

∑|j |<n

ajσ(i)p`i+j , σ ∈ {0, 1}2, i ∈ N2 × Zn, p`i ∈ R3.

Ulrich Reif 27.09.2013 3 / 29

Page 6: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ = aσ(p`i , . . . , p

`i+n), σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ R.

Ulrich Reif 27.09.2013 3 / 29

Page 7: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ =

∑j∈Zd

ajσp`i+j , σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ R.

Ulrich Reif 27.09.2013 3 / 29

Page 8: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ =

∑|j |<n

ajσp`i+j , σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ Rd .

Ulrich Reif 27.09.2013 3 / 29

Page 9: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ = aσ(p`i , . . . , p

`i+n), σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ M.

Ulrich Reif 27.09.2013 3 / 29

Page 10: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+12i+σ = gσ(p`i , . . . , p

`i+n), σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ Rd .

Ulrich Reif 27.09.2013 3 / 29

Page 11: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 4 / 29

Page 12: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 5 / 29

Page 13: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 6 / 29

Page 14: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 7 / 29

Page 15: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 8 / 29

Page 16: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 9 / 29

Page 17: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 10 / 29

Page 18: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Sabin’s Circle-preserving subdivision

Ulrich Reif 27.09.2013 11 / 29

Page 19: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

Ulrich Reif 27.09.2013 12 / 29

Page 20: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

Ulrich Reif 27.09.2013 12 / 29

Page 21: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

Ulrich Reif 27.09.2013 12 / 29

Page 22: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

Ulrich Reif 27.09.2013 12 / 29

Page 23: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

• • •

Ulrich Reif 27.09.2013 12 / 29

Page 24: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.

• • • • • • •

Ulrich Reif 27.09.2013 12 / 29

Page 25: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinearsubdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+12i+σ = gσ(p`i , . . . , p

`i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2 + τe. • • • • • • •

Ulrich Reif 27.09.2013 12 / 29

Page 26: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Basics: matrix-like formalism

Analogous to the representation of linear schemes in terms of pairs ofmatrices, there exist functions gσ such that

p`+12i+σ = gσ(p`i ),

where p`i = [p`i ; . . . ; p`i+n−1] are subchains of P` of length n.

Constant chains are fixed points,

gσ(p) = p if ∆p = 0.

Composition of functions gσ is denoted by

gΣ = gσ` ◦ · · · ◦ gσ1 , Σ = [σ1, . . . , σ`], |Σ| = `.

Let e := [e; . . . ; ne]. Then

gΣ(e) = 2−|Σ|e + τΣe.

Ulrich Reif 27.09.2013 13 / 29

Page 27: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Basics: spaces of chains

EZ := Rd×Z is the space of infinite chains in Rd .

En := Rd×n is the space of chains with n vertices in Rd .

Ln := {p ∈ En : ∆2p = 0} is the space of linear chains.

Π : En → Ln is the orthogonal projector onto Ln.

For P ∈ EZ, let

‖P‖ := supi‖pi‖2, |P|1 := ‖∆P‖, |P|2 := ‖∆2P‖.

Ulrich Reif 27.09.2013 14 / 29

Page 28: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Basics: spaces of chains

EZ := Rd×Z is the space of infinite chains in Rd .

En := Rd×n is the space of chains with n vertices in Rd .

Ln := {p ∈ En : ∆2p = 0} is the space of linear chains.

Π : En → Ln is the orthogonal projector onto Ln.

For p ∈ En, let

‖p‖ := supi‖pi‖2, |p|1 := ‖∆p‖, |p|2 := ‖∆2p‖.

Ulrich Reif 27.09.2013 14 / 29

Page 29: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Basics: relative distortion

The relative distortion of some chain p ∈ En is defined by

κ(p) :=

|p|2|Πp|1

if |Πp|1 6= 0

∞ if |Πp|1 = 0.

Invariance under similarities,

κ(p) = κ(S(p)), S ∈ S(E).

Distortion of infinite chain,

κ(P) := supi∈Z

κ(pi ), pi = [pi ; . . . ; pi+n−1].

Distortion sequence generated by subdivision,

κ` := κ(P`), P` := G`(P).

Ulrich Reif 27.09.2013 15 / 29

Page 30: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.

Ulrich Reif 27.09.2013 16 / 29

Page 31: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.

Lemma

Let G be a GLUE-scheme. If the chain P is

straightened by G, then |P|1 ≤ Cq` for any q > 1/2;

strongly straightened by G, then |P|1 ≤ Cq` for any q = 1/2;

straightened by G at rate α, then |P|2 ≤ C2−`(1+α).

Ulrich Reif 27.09.2013 16 / 29

Page 32: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.

Lemma

Let G be a GLUE-scheme. If the chain P is

straightened by G, then |P|1 ≤ Cq` for any q > 1/2;

strongly straightened by G, then |P|1 ≤ Cq` for any q = 1/2;

straightened by G at rate α, then |P|2 ≤ C2−`(1+α).

Proof:

induction on |Σ|q-Pochhammer symbol

Ulrich Reif 27.09.2013 16 / 29

Page 33: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.

Theorem (R. 2013)

Let G be a GLUE-scheme. If the chain P is

straightened by G, then P` converges to a continuous limit curve;

strongly straightened by G, then the limit curve is C 1 and regular;

straightened by G at rate α, then the limit curve is C 1,α and regular.

Ulrich Reif 27.09.2013 16 / 29

Page 34: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Convergence

Let ϕ be a C k -function whichI has compact support;I constitues a partition of unity,

∑j ϕ(· − j) = 1.

Associate a curve Φ` to the chain P` at stage ` by

Φ`[P`] :=∑`∈Z

p`jϕ(2` · −j)

If Φ`[P`] is Cauchy in C 0, then the limit curve

Φ[P] := lim`→∞

Φ`[P`]

is well defined, continuous, and independent of ϕ.

If Φ`[P`] is Cauchy in C k , then the limit curve Φ[P] is C k .

Use modulus of continuity to establish Holder exponent.

Ulrich Reif 27.09.2013 17 / 29

Page 35: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Convergence

Let ϕ be a C k -function whichI has compact support;I constitues a partition of unity,

∑j ϕ(· − j) = 1.

Associate a curve Φ` to the chain P` at stage ` by

Φ`[P`] :=∑`∈Z

p`jϕ(2` · −j)

If Φ`[P`] is Cauchy in C 0, then the limit curve

Φ[P] := lim`→∞

Φ`[P`]

is well defined, continuous, and independent of ϕ.

If Φ`[P`] is Cauchy in C k , then the limit curve Φ[P] is C k .

Use modulus of continuity to establish Holder exponent.

Ulrich Reif 27.09.2013 17 / 29

Page 36: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Convergence

Let ϕ be a C k -function whichI has compact support;I constitues a partition of unity,

∑j ϕ(· − j) = 1.

Associate a curve Φ` to the chain P` at stage ` by

Φ`[P`] :=∑`∈Z

p`jϕ(2` · −j)

If Φ`[P`] is Cauchy in C 0, then the limit curve

Φ[P] := lim`→∞

Φ`[P`]

is well defined, continuous, and independent of ϕ.

If Φ`[P`] is Cauchy in C k , then the limit curve Φ[P] is C k .

Use modulus of continuity to establish Holder exponent.

Ulrich Reif 27.09.2013 17 / 29

Page 37: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Convergence

Let ϕ be a C k -function whichI has compact support;I constitues a partition of unity,

∑j ϕ(· − j) = 1.

Associate a curve Φ` to the chain P` at stage ` by

Φ`[P`] :=∑`∈Z

p`jϕ(2` · −j)

If Φ`[P`] is Cauchy in C 0, then the limit curve

Φ[P] := lim`→∞

Φ`[P`]

is well defined, continuous, and independent of ϕ.

If Φ`[P`] is Cauchy in C k , then the limit curve Φ[P] is C k .

Use modulus of continuity to establish Holder exponent.

Ulrich Reif 27.09.2013 17 / 29

Page 38: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Proximity

Given a GLUE-schem G, choose a linear subdivision scheme A withequal shift, i.e., G(E) = AE = (E + τe)/2.

Schemes G and A differ by remainder R,

R(P) := G(P)− AP.

Choose ϕ as limit function of A correspondig to Dirac data δj ,0 todefine curves Φ`[P`] at level `.

Curves at levels ` and `+ r differ by∣∣∂j(Φ`+r [P`+r ]− Φ`[P`])∣∣∞ ≤ c

∞∑i=`

2ij |R(Pi )|0.

Use bound

|R(Pi )|0 ≤ cκiqi

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.

Ulrich Reif 27.09.2013 18 / 29

Page 39: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Proximity

Given a GLUE-schem G, choose a linear subdivision scheme A withequal shift, i.e., G(E) = AE = (E + τe)/2.

Schemes G and A differ by remainder R,

R(P) := G(P)− AP.

Choose ϕ as limit function of A correspondig to

Dirac data δj ,0 todefine curves Φ`[P`] at level `.

Curves at levels ` and `+ r differ by∣∣∂j(Φ`+r [P`+r ]− Φ`[P`])∣∣∞ ≤ c

∞∑i=`

2ij |R(Pi )|0.

Use bound

|R(Pi )|0 ≤ cκiqi

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.

Ulrich Reif 27.09.2013 18 / 29

Page 40: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Proximity

Ulrich Reif 27.09.2013 19 / 29

Page 41: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Proximity

Given a GLUE-schem G, choose a linear subdivision scheme A withequal shift, i.e., G(E) = AE = (E + τe)/2.

Schemes G and A differ by remainder R,

R(P) := G(P)− AP.

Choose ϕ as limit function of A correspondig to Dirac data δj ,0 todefine curves Φ`[P`] at level `.

Curves at levels ` and `+ r differ by∣∣∂j(Φ`+r [P`+r ]− Φ`[P`])∣∣∞ ≤ c

∞∑i=`

2ij |R(Pi )|0.

Use bound

|R(Pi )|0 ≤ cκiqi

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.

Ulrich Reif 27.09.2013 20 / 29

Page 42: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Proximity

Given a GLUE-schem G, choose a linear subdivision scheme A withequal shift, i.e., G(E) = AE = (E + τe)/2.

Schemes G and A differ by remainder R,

R(P) := G(P)− AP.

Choose ϕ as limit function of A correspondig to Dirac data δj ,0 todefine curves Φ`[P`] at level `.

Curves at levels ` and `+ r differ by∣∣∂j(Φ`+r [P`+r ]− Φ`[P`])∣∣∞ ≤ c

∞∑i=`

2ij |R(Pi )|0.

Use bound

|R(Pi )|0 ≤ cκiqi

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.

Ulrich Reif 27.09.2013 20 / 29

Page 43: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Checks for straightening

For applications, we need explicit values α, δ such that P is straightenedby G at rate α whenever κ(P) ≤ δ.

Ulrich Reif 27.09.2013 21 / 29

Page 44: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Checks for straightening

Lemma

Let

Γ`[δ] := sup0<|d|2≤δ

κ`(e + d)

|d|2.

If Γ`[δ] < 1 for some ` ∈ N, then P is straightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ δ.

Ulrich Reif 27.09.2013 21 / 29

Page 45: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Checks for straightening

Lemma

Let

Γ`[δ] := sup0<|d|2≤δ

κ`(e + d)

|d|2.

If Γ`[δ] < 1 for some ` ∈ N, then P is straightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ δ.

+ A rigorous upper bound on Γ`[δ] can be established using mean valuetheorem and interval arithmetics.

– The larger δ, the poorer α.

Ulrich Reif 27.09.2013 21 / 29

Page 46: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Checks for straightening

Theorem (R. 2012)

Let

Γ`[δ] := sup0<|d|2≤δ

κ`(e + d)

|d|2and Γk [δ, γ] := max

δ≤|d|2≤γ

κk(e + d)

|d|2.

If Γ`[δ] < 1 for some ` ∈ N, and Γk [δ, γ] < 1 for some k ∈ N, then P isstraightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ γ.

+ Rigorous upper bounds on Γ`[δ] and Γk [δ, γ] via interval arithmetics.

+ Choose δ as small as possible to get good α.

+ Choose γ as large as possible to get good range of applicability.

Ulrich Reif 27.09.2013 22 / 29

Page 47: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Checks for straightening

Theorem (R. 2012)

Let

Γ`[δ] := sup0<|d|2≤δ

κ`(e + d)

|d|2and Γk [δ, γ] := max

δ≤|d|2≤γ

κk(e + d)

|d|2.

If Γ`[δ] < 1 for some ` ∈ N, and Γk [δ, γ] < 1 for some k ∈ N, then P isstraightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ γ.

+ Rigorous upper bounds on Γ`[δ] and Γk [δ, γ] via interval arithmetics.

+ Choose δ as small as possible to get good α.

+ Choose γ as large as possible to get good range of applicability.

Ulrich Reif 27.09.2013 22 / 29

Page 48: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Differentiation

In general, the derivative of a function g : En → En is represented byn × n matrices of dimension d × d , each.

By property G, the derivative of gσ at e has the special form

Dgσ(e) · q = AσqΠn + Bσ qΠt , σ ∈ {0, 1},

where Aσ,Bσ are (n × n)-matrices, and

Πt := diag[1, 0, . . . , 0], Πn := diag[0, 1, . . . , 1]

are (d × d)-matrices representing orthogonal projection onto thex-axis and its orthogonal complement.

Let A = (A0,A1) and B = (B0,B1) denote the linear subdivisionschemes corresponding to normal and tangential direction.

Ulrich Reif 27.09.2013 23 / 29

Page 49: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Differentiation

In general, the derivative of a function g : En → En is represented byn × n matrices of dimension d × d , each.

By property G, the derivative of gσ at e has the special form

Dgσ(e) · q = AσqΠn + Bσ qΠt , σ ∈ {0, 1},

where Aσ,Bσ are (n × n)-matrices, and

Πt := diag[1, 0, . . . , 0], Πn := diag[0, 1, . . . , 1]

are (d × d)-matrices representing orthogonal projection onto thex-axis and its orthogonal complement.

Let A = (A0,A1) and B = (B0,B1) denote the linear subdivisionschemes corresponding to normal and tangential direction.

Ulrich Reif 27.09.2013 23 / 29

Page 50: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Inheritance of C 1,α-regularity

Theorem (R. 2013)

Let the linear schemes A and B be C 1,α and C 1,β, resp. If P isstraightened by G, then the limit curve Φ[P] is C 1,min(α,β).

Proof: Show that

limδ→0

lim inf`→∞

(Γ`[δ]

)1/` ≤ max(jsr(A2

0,A21), jsr(B2

0 ,B21 )).

Ulrich Reif 27.09.2013 24 / 29

Page 51: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n × n)-matricesA0,A1 such that

Dgσ(e) · q = AσqΠn + Bσ qΠt .

Aσq.

In this case the linear scheme A = (A0,A1) is called the linearcompanion of G.

For d = 1, any GLUE-scheme G is locally linear.

For d ≥ 2, the scheme G is locally linear if A = B.

Circle-preserving subvdivion is locally linear, and the standardfour-point scheme is its linear companion.

Ulrich Reif 27.09.2013 25 / 29

Page 52: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n × n)-matricesA0,A1 such that

Dgσ(e) · q = Aσq.

In this case the linear scheme A = (A0,A1) is called the linearcompanion of G.

For d = 1, any GLUE-scheme G is locally linear.

For d ≥ 2, the scheme G is locally linear if A = B.

Circle-preserving subvdivion is locally linear, and the standardfour-point scheme is its linear companion.

Ulrich Reif 27.09.2013 25 / 29

Page 53: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n × n)-matricesA0,A1 such that

Dgσ(e) · q = Aσq.

In this case the linear scheme A = (A0,A1) is called the linearcompanion of G.

For d = 1, any GLUE-scheme G is locally linear.

For d ≥ 2, the scheme G is locally linear if A = B.

Circle-preserving subvdivion is locally linear, and the standardfour-point scheme is its linear companion.

Ulrich Reif 27.09.2013 25 / 29

Page 54: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Inheritance of C 2,α-regularity

Theorem (R. 2013)

Let G be locally linear, and let the linear companion A be C 2,α. If P isstraightened by G, then the limit curve Φ[P] is C 2,α.

Proof:

Use basic limit function ϕ of A to define curves Φ`[P`].

Use bound

|R(P)|0 ≤ cκ(P)|P|2

on the remainder R(P) := G(P)− AP.

Ulrich Reif 27.09.2013 26 / 29

Page 55: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Inheritance of C 3,α-regularity

. . . cannot be expected!

Ulrich Reif 27.09.2013 27 / 29

Page 56: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Inheritance of C 3,α-regularity

. . . cannot be expected!

Ulrich Reif 27.09.2013 27 / 29

Page 57: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

A counter-example

Consider

g0(p`i , . . . , p`i+3) =

6

32p`i +

20

32p`i+1 +

6

32p`i+2 +

‖∆2p`i ‖‖∆p`i ‖

∆2p`i

g1(p`i , . . . , p`i+3) =

1

32p`i +

15

32p`i+1 +

15

32p`i+2 +

1

32p`i+3

The scheme is locally linear with A0,A1 representing quintic B-splinesubdivision. However, limit curves Φ∞[P] are not C 4, and not even C 3.

Ulrich Reif 27.09.2013 28 / 29

Page 58: Analysis of Geometric Subdivision Schemespages.cs.wisc.edu/~deboor/MAIA2013/slides/reif.pdf · Analysis of Geometric Subdivision Schemes Ulrich Reif Technische Universit at Darmstadt

Conclusion

Geometric subdivision schemes deserve attention.

Results apply to a wide range of algorithms.

Holder continuity of first order can be established rigorously by meansof a universal computer program (at least in principle, runtime maybe a problem).

For locally linear schemes, Holder-regularity of second order can bederived from a linear scheme, defined by the Jacobians at linear data.

Regularity of higher order requires new concepts.

Ulrich Reif 27.09.2013 29 / 29