ian Inference | Chapter 9. Comparing Bayesian and Inference f Statistics, H iscrete pr mator and...

download ian Inference | Chapter 9. Comparing Bayesian and Inference f Statistics, H iscrete pr mator and mator with imators an | Chapter 9. ANNAM Un ior 95% cred Beta (2, 4 d π in the Comparing

If you can't read please download the document

  • date post

    29-Apr-2018
  • Category

    Documents

  • view

    214
  • download

    1

Embed Size (px)

Transcript of ian Inference | Chapter 9. Comparing Bayesian and Inference f Statistics, H iscrete pr mator and...

  • Professo

    Nume

    Comp

    (1) Ca

    (2) Ca

    (3) (4) Pl

    or Kwon, Sehy

    erical app

    uting exe

    alculate Ba

    alculate Ba

    ot three Ba

    Bayes

    yug | Dept. o

    roach : D

    ercise

    yesian esti

    yesian esti

    ayesian est

    ian Inference

    of Statistics, H

    Discrete pr

    mator and

    mator with

    timators an

    e | Chapter 9.

    HANNAM Un

    rior

    95% cred

    h Beta (2, 4

    nd in the

    . Comparing

    niversity

    ible interva

    4) prior.

    same grap

    Bayesian and

    htt

    al with no i

    ph.

    d Frequentist

    p://wolfpack

    information

    t in the p

    | 1 .hnu.ac.kr

    n.

  • Professo

    Review

    Bayesia

    + our

    + pos

    Freque

    + like

    Freque

    Rando

    + d

    + sa

    Sampl

    rando

    statist

    samp

    + m

    Likeliho

    + Join

    + fun

    + Fre

    + Bay

    Point

    Freque

    + ML

    + MV

    or Kwon, Sehy

    w

    an view

    r belief on

    sterior dist

    entist

    elihood of

    entist inte

    m sample

    ata is draw

    ampling di

    ling Distr

    om sample

    tic : (gs =

    ling distrib

    measure ho

    ood

    nt PDF of r

    nction of th

    quentist : e

    yesian : upd

    estimatio

    entist

    LE : The val

    VUE : Facto

    Bayes

    yug | Dept. o

    the param

    ribution of

    random sa

    erpretatio

    wn from a p

    stribution

    ibution

    : ,..,( 21 yy

    ,...,,( 21 nyyy

    bution : (sf

    ow the stati

    random sa

    he paramet

    estimate th

    date the p

    on

    ue of para

    orization th

    ian Inference

    of Statistics, H

    meter is upd

    f the param

    mple = sa

    on

    population

    ? conceptu

    )., ny

    )n

    )|s , is

    istic varies

    mple, data

    ter,

    he

    rior and ge

    meter whic

    eorem, Rao

    e | Chapter 9.

    HANNAM Un

    dated by d

    meter upda

    mpling dis

    n distributio

    ually, all po

    s fixed and

    over all po

    et posterio

    ch maximiz

    o Cramer L

    . Comparing

    niversity

    ata

    ated by dat

    tribution o

    on with un

    ossible rand

    d unknown

    ossible sam

    r |( dat

    zes the like

    Lower Boun

    Bayesian and

    htt

    ta gives co

    of data

    known and

    dom sampl

    mples with

    )ta

    elihood

    nd, Rao-Bla

    d Frequentist

    p://wolfpack

    mplete infe

    d fixed p

    les

    the param

    ackwell The

    t in the p

    | 2 .hnu.ac.kr

    erence

    eter

    eorem

  • Professo

    Bayesia

    + Pos

    Evalua

    + pre

    + wh

    - es

    - Ba

    Unbias

    + Unb

    + Bia

    + Bay

    MSE m

    + MS

    + MS

    + MV

    Comp

    Freque

    + E(

    + MS

    Bayesia

    + Uni

    + Con

    - po

    - Ba

    or Kwon, Sehy

    an

    sterior mea

    ating by F

    e-data anal

    hat if the p

    stimation c

    ayesian : pr

    sed

    biased esti

    s : =)(B

    yesian don

    mean squar

    ()( = ESE

    ()( VSE =

    VUE : no bi

    aring est

    entist estim

    nyEpf = )()

    ppSE f )( =

    an estimat

    iform Prior

    njugate Pri

    osterior (

    ayesian est

    Bayes

    yug | Dept. o

    an or medi

    Frequenti

    ysis : samp

    parameter h

    oncept : m

    rior

    mator : E

    t care of u

    re of error2) : m

    2)() B+

    as, (MSE

    imators f

    mator pf =

    p=) , pV f(

    npp )1(

    tor depend

    r ~)(p

    ior (p

    ~)|( datap

    imator : p

    ian Inference

    of Statistics, H

    an of post

    st criteria

    pling dist. i

    has the val

    max.

    =)( , bia

    unbiased

    r

    measure the

    )() V= e

    or propo

    ny

    = , ~ By

    nyVf )() ==

    ding prior

    )1,1(~ Beta

    ,(~) aBeta

    *(aBeta =

    anaypB ++

    +=

    e | Chapter 9.

    HANNAM Un

    erior distri

    a

    s treated a

    ue?

    as = 0

    e precision

    estimator v

    rtion

    ),( pnB

    npp )1(

    =

    ),b

    *,bay =+

    any

    ba

    ++=

    +

    . Comparing

    niversity

    bution of t

    as a random

    n of estima

    variance

    )byn +

    ana

    b ++

    +

    Bayesian and

    htt

    the

    m variable.

    tors

    b+

    d Frequentist

    p://wolfpack

    t in the p

    | 3 .hnu.ac.kr

  • Professo

    - M

    In R :

    or Kwon, Sehy

    (

    )( VpMSE b

    =

    =

    (n=10), t

    Bayes

    yug | Dept. o

    2)1(

    ()(

    ban

    pBpV b

    ++

    +

    rue p=0.3

    ian Inference

    of Statistics, H

    2

    2

    )1(

    )

    pnp

    pb

    +

    3

    e | Chapter 9.

    HANNAM Un

    (an

    apa++

    +

    . Comparing

    niversity

    2)bbp

    Bayesian and

    htt

    d Frequentist

    p://wolfpack

    t in the p

    | 4 .hnu.ac.kr

  • Professo

    When

    Overal

    Unifo

    best c

    or Kwon, Sehy

    n p is betw

    l Best

    rm prior is

    choice is u

    Bayes

    yug | Dept. o

    ween 0.15~0

    s the best.

    niform prio

    ian Inference

    of Statistics, H

    0.7, Conjug

    Therefore,

    or.

    e | Chapter 9.

    HANNAM Un

    gate prior i

    when no i

    . Comparing

    niversity

    is the best.

    nformation

    Bayesian and

    htt

    .

    n about p I

    d Frequentist

    p://wolfpack

    I available,

    t in the p

    | 5 .hnu.ac.kr

    the

  • Professo

    Interva

    Freque

    + piv

    + sam

    + pY(

    + 100

    Bayesia

    + We

    + 100

    Barts

    Hypot

    One-si

    + nul

    + alte

    + *y

    + (Fre

    + (Fre

    alte

    or Kwon, Sehy

    al Estimat

    entist

    ot method

    mpling dist

    nppnY ~/)1

    /

    0(1-)% Co

    an

    e have exac

    0(1-)% Cr

    uniform p

    thesis test

    ded test

    l hypothes

    ernative hy

    is observe

    equentist)

    equentist)

    ernative hy

    Bayes

    yug | Dept. o

    tion

    d : get an s

    ribution :

    z by CLT

    onfidence i

    ct posterio

    edible inte

    prior => po

    ting

    sis : 0 : pH

    ypothesis :

    ed out of n

    p-value=P

    (YP

    ypothesis,

    ian Inference

    of Statistics, H

    ampling di

    ),(~ pnBY

    T

    nterval : ny

    r PDF and

    rval : ( 1 2/B

    osterior=B

    0p=

    0: ppHa >

    n Bernoulli

    |( * YyYP

    ~|YyCR

    0pp >

    e | Chapter 9.

    HANNAM Un

    istribution

    ) the param

    yzny /

    2/

    then, exac

    *),*,( 12 Bba

    )75,27(Beta

    0 (or pp pH

    ence that p

    0p= vs. al

    n Bernoulli

    |( * YyYP

    |( YyY CR

    -)% credib

    e | Chapter 9.

    HANNAM Un

    0 * )|( dyp

    6.

    6.0>p .

    lternative h

    trials

    ,(~ 0pnBY

    ),(~ 0pnBY

    ble interval

    . Comparing

    niversity

    dp is comp

    hypothesis

    2*)) (whe

    )) where y

    .

    Bayesian and

    htt

    pared to th

    : : ppHa

    en * npy >CRy is the

    d Frequentist

    p://wolfpack

    e significan

    0p

    0p )

    critical val

    t in the p

    | 7 .hnu.ac.kr

    nt level.

    ue

  • Professo

    Exercis

    Exercis

    or Kwon, Sehy

    se #1

    se #2

    Bayes

    yug | Dept. o

    ian Inference

    of Statistics, H

    e | Chapter 9.

    HANNAM Un

    . Comparing

    niversity

    Bayesian and

    htt

    d Frequentist

    p://wolfpack

    t in the p

    | 8 .hnu.ac.kr

  • Professo

    Monte

    or Kwon, Sehy

    e Carlo

    Bayes

    yug | Dept. o

    ian Inference

    of Statistics, H

    e | Chapter 9.

    HANNAM Un

    . Comparing

    niversity

    Bayesian and

    htt

    d Frequentist

    p://wolfpack

    t in the p

    | 9 .hnu.ac.kr