Higgs width from interference

22
Higgs width from interferometry in the γγ channel at the LHC Francesco Coradeschi * (University of Firenze & INFN, section of Firenze) Padova - June 4, 2015 * In collaboration with D. De Florian, L. Dixon, N. Fidanza, S. Hoece, H. Ita, Y. Li and J.Mazzitelli

description

Higgs width from interference

Transcript of Higgs width from interference

Higgs width from interferometry in the γγ channel at the LHC

Francesco Coradeschi∗(University of Firenze & INFN, section of Firenze)

Padova - June 4, 2015

∗ In collaboration with D. De Florian, L. Dixon, N. Fidanza, S. Hoece, H. Ita, Y. Liand J.Mazzitelli

Introduction

I Using interference effects in pp → γγ + X , we may boundHiggs width much better than in direct measurements (whichcan’t really do much, see e.g. [CMS] 1407.0558)

I Important test of SM (and constraint for NP)

I Similar idea used in WW /ZZ channels using far off-shellmeasurements [Caola,Melnikov] 1307.4935, [Campbell,Ellis,Williams] 1311.3589

I Can get relatively close to SM value of ∼ 4 MeV(Γ . 4ΓSM , [CMS] 1405.3455, [ATLAS] 1503.01060)

I Could be invalidated, see e.g.[Englert,Soreq,Spannowsky] 1405.0285,1410.5440, [Logan] 1412.7577

I γγ more direct: uses the shift of the resonance peak, onlydepends on near-resonance behaviour (but. . . trickier!)

Resonance-continuum interference

I It all boils down to a Breit-Wigner:

δσi1i2→H(→γγ) =

−2(s −m2H)

Re (Ai1i2→HAH→γγA∗cont)(s −m2

H)2 + m2HΓ2

−2mHΓIm (Ai1i2→HAH→γγA∗cont)

(s −m2H)2 + m2

HΓ2

I Real part of interference antisymmetric (around the peak)

I Imaginary part of interference symmetric

Mass Shift[Martin] 1208.1533

I Lineshape smeared by finite detector resolution (∼ 1 GeV;approx. with a Gaussian of width σMR)

Mass shift from real part

[Martin] arXiv:1208.1533, arXiv:1303.3342

[deFlorian et al.] arXiv:1303.1397

� Smear lineshape with Gaussian of width 1.7 GeV (∼ detector resolution)

124.95 125 125.05M

!! [GeV]

-100

-50

0

50

100

d"

/dM

!!

[fb

/Ge

V]

110 115 120 125 130 135 140M

!! [GeV]

-0.2

-0.1

0.0

0.1

0.2

d"

int/d

M!! [fb

/GeV

]

1.3 GeV1.5 GeV1.7 GeV2.0 GeV2.4 GeV

"MR

=

� Re-fitting to Gaussian of mass M + δM gives δM ∼ 100 MeV

Stefan Hoche Interferometry in γγ 4

Mass Shift[Martin] 1208.1533

I Symmetric part: same shape as the resonance, ∼ 1% effect onthe cross-section [Dixon,Siu] hep-ph/0302233

I Antisymmetric part: shifts the peak roughly proportionally toGaussian width

I Re-fitting the lineshape to a Gaussian centered at mH + δmH

⇒ δmH ∼ −100 MeV (in the inclusive case; details later)

I For comparison latest experimental fit gives [ATLAS-CMS] 1503.07589

mγγH = 125.07± 0.25 (stat.)± 0.14 (syst.) GeV

m4lH = 125.15± 0.37 (stat.)± 0.15 (syst.) GeV

Mass Shift[Martin] 1208.1533, [F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Shift vs. experimental mass resolution σMR in γγ + 2j

1.0 1.5 2.0 2.5 3.0!35

!30

!25

!20

!15

!10

!5

0

"MR !GeV"

#mH!MeV

"

#$% jj #&2.8pT ,H &40 GeV , #$% jj #&2.8pT ,H &80 GeV , #$% jj #&2.8

#$% jj #&0#$% jj #&5

New Physics

I Use Effective Lagrangian parametrization[Giudice,Grojean,Pomarol,Rattazzi] hep-ph/0703164

L = −[αs

8πcgbgGa,µνG

µνa +

α

8πcγbγFµνF

µν] h

v

(+ similar contr. for W /Z ) with cγ = cg = 1 in the SM

⇒ σ 'c2gc

2γS

mHΓ

I We can keep the signal strength µ = σ/σSM = 1 and varyΓSM

⇒ δmH ∼ cgcγ '√

Γ/ΓSM

New Physics[Dixon,Li] 1305.3854

I Shift vs. Γ/ΓSM (at µ = 1) in inclusive γγ

0 5 10 15 20!400

!300

!200

!100

0

100

200

300

"H !"HSM

#M

H!MeV

Constructive Interf.

Destructive Interf. "SM#

New Physics[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Shift vs. Γ/ΓSM (at µ = 1) in γγ + 2j

0 5 10 15 20!350

!300

!250

!200

!150

!100

!50

0

"! "SM

#m

H$$"MeV

#

Inclusive case (@ NLO)[Dixon,Li] 1305.3854

I Representative diagrams

NLO (gg): +

+ +

LO (gg): H LO (qg):

Inclusive case (@ NLO)[Dixon,Li] 1305.3854

I Plots using a test σMR = 1.7 GeV

120 122 124 126 128 1300

1

2

3

4

M!! !GeV"

d"sig#dM!

!!fb#G

eV"

Higgs Signal # NLO $gg%Higgs Signal # LO $gg%

120 122 124 126 128 130

!0.10

!0.05

0.00

0.05

0.10

M"" !GeV"d#

int #dM"

"!fb#G

eV" Interference $ NLO $gg%Interference $ LO $qg%Interference $ LO $gg%

Results: inclusive case[Dixon,Li] 1305.3854

I Shift as a function of jet veto

10 20 30 40 50 60

!120

!100

!80

!60

!40

!20

0

pT ,veto ! GeV

"M

H!MeV

NLO "gg# # LO "qg#NLO "gg#LO "gg#

Results: inclusive case[Dixon,Li] 1305.3854

I K-factor larger for resonant part → relative size ofinterference smaller compared to LO estimate

10 20 30 40 50 60

!120

!100

!80

!60

!40

!20

0

pT ,veto ! GeV

"M

H!MeV

NLO "gg# # LO "qg#NLO "gg#LO "gg#

Control mass

Need something to measure the shift against. . .

I Ideally, the h→ ZZ channel: δmZZH � δmγγ

H [Kauer,Passarino] 1206.4803.However, expect bigger systematics (different final state)[CMS] 1407.0558, [ATLAS] 1406.3827

I May use inclusive h→ γγ itself

I h→ γγ + 2j : include VBF production [F.C.,De

Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I For comparison latest experimental fit gives [ATLAS-CMS] 1503.07589

mγγH = 125.07± 0.25 (stat.)± 0.14 (syst.) GeV

m4lH = 125.15± 0.37 (stat.)± 0.15 (syst.) GeV

Control mass

Inclusive h→ γγ as control mass [Dixon,Li] 1305.3854

I qg -gg channel cancellations ⇒ pT ,H dependence

I When pT ,H & 40 GeV, the shift drops almost to 0

I Experimental systematics largely cancel

0 20 40 60 80 100!120

!100

!80

!60

!40

!20

0

20

pT ,H ! GeV

"M

H!MeV

H#g!q $ O"%S3#H#g!q $ O"%S3#!O"%S2#H#g $ O"%S3#

Control mass

Need something to measure the shift against. . .

I Ideally, the h→ ZZ channel: δmZZH � δmγγ

H [Kauer,Passarino] 1206.4803.However, expect bigger systematics (different final state)[CMS] 1407.0558, [ATLAS] 1406.3827

I May use h→ γγ itself

I h→ γγ + 2j : include VBF production

I For comparison latest experimental fit gives [ATLAS-CMS] 1503.07589

mγγH = 125.07± 0.25 (stat.)± 0.14 (syst.) GeV

m4lH = 125.15± 0.37 (stat.)± 0.15 (syst.) GeV

γγ + 2j channel (@ LO)[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Some representative diagrams

γγ + 2j channel (@ LO)[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I First useful channel to include VBF production

I Smaller rate, signal-to-background still good

I GF and VBF quite cleanly separated by kinematics

Results: γγ + 2j channel[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Shift (and signal) as a function of jet separation |∆jj |min

!20

!10

0

10"m

H!MeV

"

M jj#400GeV

VBFGFSum

0 1 2 3 4 5 6 7 80.001

0.01

0.1

1

10

#$% jj min

Signal!fb"

Results: γγ + 2j channel[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Shift has opposite sign in GF and VBF

I In general, effect smaller in magnitude with respect to theinclusive case, plus cancellation. . .

I Not good to measure shift, but good control case!

Results: γγ + 2j channel[F.C.,De Florian,Dixon,Fidanza,Hoece,Ita,Li,Mazzitelli] 1504.05215

I Shift (and signal) as a function of minimum Higgs pT

!20

!15

!10

!5

0

5

"mH!MeV

"M jj#400GeV

#$% jj ##2.8VBF

GF

Sum

0 20 40 60 80 100 120 140 1600.00.51.01.52.02.53.0

pT ,Hmin !GeV"

Signal!fb"

Conclusions

I In this phase, we need to test the SM in as many differentways as we can think of

I The Higgs width is an important theoretical quantity (→overall coupling strenght), but not directly measurable

I The mass shift from interference gives a competitive indirectmeasure (at least complementary) of Γ

I The VBF-enriched γγ + 2j channel also provides a candidatecontrol mass