Search for Higgs Bosons Beyond the Standard Model with...

46
Second MCTP Spring Symposium on Higgs Boson Physics Ann Arbor, April 16-20, 2012 Search for Higgs Bosons Beyond the Standard Model with ATLAS Christoph Anders On behalf of the ATLAS Collaboration Universit¨ at Heidelberg April 18 th 2012

Transcript of Search for Higgs Bosons Beyond the Standard Model with...

  • Second MCTP Spring Symposium on Higgs Boson PhysicsAnn Arbor, April 16-20, 2012

    Search for Higgs Bosons Beyond the StandardModel with ATLAS

    Christoph AndersOn behalf of the ATLAS Collaboration

    Universität Heidelberg

    April 18th 2012

  • Overview 2/26

    Fermiophobic Higgs bosonsH → γγMSSM neutral Higgs bosonsh/H/A→ ττCharged Higgs bosons:

    H+ → τhadνH+ → τ`νH+ → cs̄

    Doubly charged Higgs bosonsH++ → µ+µ+

    NMSSM light neutral Higgs bosonsa1 → µµ

    New preliminary resultswith 4.9fb−1

    Preliminary results with 1.06fb−1

    Submitted to JHEPlast week! (4.7fb−1)

    Preliminary results with 0.035fb−1

    Published in PRL(1.6fb−1)

    Preliminary results with 0.037fb−1

  • Fermiophobic Higgs Bosons I 3/26Basics

    2HDM and Higgs triplet models withreduced couplings to fermions.Simple benchmark scenario:

    No fermion-Higgs couplingsSM boson-Higgs couplings

    Production in VBF and associatedwith W /Z

    Decay: γγ, WW , ZZ , Zγ

    σ × BR larger than SM for light Higgsbosons

    Higher pT (recoil)

    σ × BR:

    [GeV]HM100 150 200 250

    BR

    [pb]

    × -310

    -210

    -110

    1

    10

    210

    LHC

    HIG

    GS

    XS W

    G 2

    011

    Fermiophobic = 7TeVs

    (SM)

    Z (SM)Z

    WW

    WW (SM)

    ZZ

    ZZ (SM)

    LHC HIGGS XS WG 2011

  • Fermiophobic Higgs Bosons II 4/26Selection (Identical to SM H → γγ)

    2 isolated photons,pT > 40 GeV, 25 GeV

    100 < mγγ < 160 GeV

    9 categories

    Presence of photon conversionsPhoton calorimeter impact pointpTt, component of pT ,γγ ⊥ γγ-thrust axis

    mγγ signal model:Crystal Ball + wide Gaussian(tail)

    mγγ background model:Falling exponential

  • Fermiophobic Higgs Bosons III 5/26Exclusion Limits

    Largest excess at mH = 125.5 GeVSignificance including look-elsewhere effect:1.6σ(Or 5% prob. for a background fluctuation)

    Exclusion limitsat 95% confidence level using theprofile likelihood method with CLS

    Expected mH exclusion:110.0− 123.5 GeVObserved mH exclusion:110.0− 118.0 GeV and119.5− 121.0 GeV

  • Neutral MSSM Higgs Bosons I 6/26Basics

    2 Higgs-doublets → 5 Higgs bosonsΦ = H, h,A,H±

    Free parameters at tree level: mA,tanβ = vu/vd

    Enhanced couplings to b and τ in large partsof the parameter space (σbbA ≈ tan2 β)

    Production:

  • Neutral MSSM Higgs Bosons II 7/26Hadronic Tau Decay Signature and Identification

    Typical signature:

    One or three charged tracks

    Collimated calorimeter energy deposits

    Large leading track momentumfraction

    Secondary vertex reconstruction

  • Neutral MSSM Higgs Bosons III 8/26Selection

    e + µ:

    1 isolated e,pT > 22 GeV

    1 isolated µ,pT > 20 GeV

    Opposite charges

    ∆Φ(e, µ) > 2rad

    PeT + PµT + E

    missT

    < 120 GeV

    e/µ+ τhad:

    1 isolated e/µ,pT > 25/20 GeV

    1 τhad,pT > 20 GeV

    Opposite charges

    Di-lepton veto

    EmissT > 20 GeV

    mT < 30 GeV

    τhad + τhad:

    Di-τhadtrigger

    2 τhad,pT > 45/30 GeV

    Opposite charges

    Light lepton veto

    EmissT > 30 GeV

    [GeV]µT,

    +pT,e

    +pT,missE

    0 50 100 150 200 250 300 350 400

    Events

    / 1

    0 G

    eV

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900Data 2011

    =20β, tanττ →A(120)/h/H ) embeddedττ→*(γZ/

    Others

    Diboson

    QCD multi-jet

    & single-tttsyst.

    PreliminaryATLAS

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    channelµe

    [GeV]T,missE

    0 10 20 30 40 50 60 70 80 90 100

    Eve

    nts

    / 2

    Ge

    V

    0

    100

    200

    300

    400

    500

    [GeV]T,missE

    0 10 20 30 40 50 60 70 80 90 100

    Eve

    nts

    / 2

    Ge

    V

    0

    100

    200

    300

    400

    500Data 2011

    =20β, tanττ→A(120)/H/h) emb.(OS-SS)ττ→*(γZ/

    Others(OS-SS)

    W+jets (OS-SS)

    Same Sign

    stat.

    channelshad

    τµ + hadτe

    -1 L = 1.06 fb∫ = 7TeV, s

    ATLAS Preliminary

    [GeV]missTE

    0 20 40 60 80 100E

    vents

    / 5

    GeV

    0

    20

    40

    60

    80

    100

    120

    140

    [GeV]missTE

    0 20 40 60 80 100E

    vents

    / 5

    GeV

    0

    20

    40

    60

    80

    100

    120

    140 Data 2011=20β, tanττ →A(200)/H/h

    Multi-Jet

    )ττ→*(γZ/

    ) + jetsντ→W(

    Others

    stat.

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    PreliminaryATLAS

    channelhad

    τhad

    τ

  • Neutral MSSM Higgs Bosons IV 9/26Mass Reconstruction

    Invariant mass mvis of visible decay products

    Effective mass: meff =√

    (pe + pµ + pmiss)2, withpmiss = (E

    missT ,E

    missx ,E

    missy ,E

    missz = 0).

    New method called Missing Mass Calculator (MMC)(see arXiv:1012.4686)

    MMC (lep-had case):7 unknowns: “Missing” 3-momenta and massof νν system

    4 constraints: EmissT ,x , EmissT ,y , mτ1 , mτ2

    → scan ∆Φ1(ντ , h), ∆Φ2(ντν`, `), mννWeight solutions according to probability of 3Dangle in solution ↘

    Maximum of weighted mττdistribution is the MMC mass mMMC

    meff :

    mMMC:

    [rad]3Dθ∆0 0.05 0.1 0.15 0.2

    Arb

    itrar

    y un

    its

    0

    0.005

    0.01

    0.015 ATLAS Simulation

    Simulationττ→Z

    Probability function

    decayτ1-prong 50 [GeV]≤τ45

  • Neutral MSSM Higgs Bosons V 10/26Background Estimation

    Based on data control samples:

    Z/γ∗ → ττ from “τ -embedded”Z/γ∗ → µµ data sampleQCD multijet backgrounds fromcontrol samples with same-signcharges and low EmissT orinverted lepton isolation

    W+jets from high mT (`,EmissT )

    control region

    [GeV]ττMMC m

    0 50 100 150 200 250 300

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    µ µ →* γEmbedded Z/

    MCτ τ →* γZ/

    channelshadτµ + hadτe

    -1L dt = 1.06 fb∫ = 7 TeV, s

    ATLAS Preliminary

  • Neutral MSSM Higgs Bosons IV 11/26Results

    e + µ: e/µ+ τhad: τhad + τhad:

    effective [GeV]ττm

    0 50 100 150 200 250

    Eve

    nts

    / 10

    GeV

    0

    100

    200

    300

    400

    500

    600

    700 Data 2011=20β, tanττ →A(120)/h/H

    ) embeddedττ→*(γZ/OthersDibosonQCD multi-jet

    & single-tttsyst.

    PreliminaryATLAS

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    channelµe

    [GeV]ττMMC m

    0 50 100 150 200 250 300 350 400

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    350

    400

    [GeV]ττMMC m

    0 50 100 150 200 250 300 350 400

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    350

    400Data 2011

    =20β, tanττ→A(120)/H/h) emb.(OS-SS)ττ→*(γZ/

    Others(OS-SS)W+jets (OS-SS)Same Signstat.

    channelshad

    τµ + hadτe

    -1 L = 1.06 fb∫ = 7TeV, sATLAS Preliminary

    visible [GeV]ττm

    0 100 200 300 400 500 600

    Eve

    nts

    / 15

    GeV

    0

    10

    20

    30

    40

    50

    60

    70

    visible [GeV]ττm

    0 100 200 300 400 500 600

    Eve

    nts

    / 15

    GeV

    0

    10

    20

    30

    40

    50

    60

    70Data 2011

    =20β, tanττ →A(200)/H/h

    Multi-Jet

    )ττ→*(γZ/

    ) + jetsντ→W(

    Others

    stat.

    -1Ldt = 1.06 fb∫ = 7 TeV, s PreliminaryATLAS

    channelhadτhadτ

    Final state Exp. Background Data

    eµ (2.6± 0.2)× 103 2472`τhad (2.1± 0.4)× 103 1913τhadτhad 233

    +44−28 245

    Sum (4.9± 0.6)× 103 4630

  • Neutral MSSM Higgs Bosons VII 12/26Exclusion Limits (ATLAS-CONF-2011-132)

    [GeV]φm

    100 200 300 400 500 600

    ) [p

    b]

    ττ →φ

    BR

    (× φ

    σ95%

    CL u

    pp

    er

    limit o

    n

    -110

    1

    10

    210

    310 CLsφ →Observed gg

    φ →Expected gg

    CLsφObserved bb

    φExpected bb) theory ττ→

    SM x BR(H

    SMσ

    -1 Ldt = 1.06 fb∫ = 7 TeV, s

    All channels

    ATLAS Preliminary

    [GeV]Am

    100 150 200 250 300 350 400 450β

    tan

    0

    10

    20

    30

    40

    50

    60All channels

    -1 Ldt = 1.06 fb∫ = 7 TeV, s

    >0µ, maxhm

    ATLAS Preliminary

    Observed CLs

    Expected CLs

    σ 1±σ 2±

    LEP

    observed-1

    ATLAS 36 pb

    expected-1

    ATLAS 36 pb

    σ × BR(Φ→ ττ)

    Assume only one resonnance Φ

    Pure gg → Φ or pure bbΦ production

    mA, tan β plane

    Need to assume specific (c)MSSM scenario

    Here: mmaxh scenario

  • Neutral MSSM Higgs Bosons VIII 13/26Comparison of Search Channels

    [GeV]Am

    100 150 200 250 300 350 400 450

    βta

    n

    0

    10

    20

    30

    40

    50

    60All channels

    -1 Ldt = 1.06 fb∫ = 7 TeV, s

    >0µ, maxhm

    ATLAS Preliminary

    Observed (hh only)

    Observed (lh only)

    Observed (emu only)

    Observed CLs

    Expected (hh only)

    Expected (lh only)

    Expected (emu only)

    Expected CLs

    LEP

    Update to full 4.9fb−1 data set and with inclusion of b-tagging inprogress!

  • Charged Higgs Bosons I 14/26Basics

    Predicted in Higgs doublet (e.g.MSSM) and triplet models

    mH+ < mt : dominantly produced intop quark decays

    mH+ > mt : gb → tH+ production

    important (more data needed)

    For tanβ > 3 preferred decay mode isH+ → τν (here: assume 100%, unless MSSM)

    Channels:

  • Charged Higgs Bosons II 15/26Lepton+Jets Channel – Selection

    1 isolated e/µ, pT > 25/20 GeV

    ≥ 4jets (2 b-tagged), pT > 20 GeVEmissT > 40 GeV if |Φ`,miss| ≥ π/6

    EmissT × | sin Φ`,miss| > 20 GeV if |Φ`,miss| < π/6

    Minimize χ2 =(mjjb−mtop)

    2

    σ2top+

    (mjj−mW )2

    σ2W

    to get “hadronic side”

    Discriminating variables: cos Θ∗` =2m2bl

    m2top−m2W

    − 1 ≈ 4pb·p`

    m2top−m2W

    − 1

    (mHT )2 = (

    √m2top + ( ~pT

    ` + ~pTb + ~pT

    miss)2 − pbT)2 − ( ~pT` + ~pTmiss)2

    Discriminatesbetween e/µfrom W andτ .

    Lower boundon chargedboson(W /H+) mass

    Signal region: cos Θ∗` < −0.6 and mEmissT ,`

    T < 60 GeV

  • Charged Higgs Bosons III 16/26Lepton+Jets – Channel Results

    Dominant background: tt̄, simulated withMC@NLO, normalized in −0.2 < cos Θ∗` < 1data control region

    Misidentified-lepton background determinatedfrom control sample with loosened lepton ID

  • Charged Higgs Bosons IV 17/26τhad+Lepton Channel – Selection

    1 τhad, pT > 20 GeV

    1 e/µ, pT > 25/20 GeV, opposite charge

    ≥ 2 jets, pT > 20 GeV, including ≥ 1 b-tagged jet∑ptracksT > 100 GeV, for tracks asociated to

    primary vertex

    Discriminatingvariable: EmissT−→

    Misidentified taus background:e: ≈ 1%, jets: ≈ 55%; jet→τhadmis-ID measured with W+jetsTrue tau background taken from simulation

  • Charged Higgs Bosons V 18/26τhad+Lepton Channel – Candidate Event

  • Charged Higgs Bosons VI 19/26τhad+jets Channel – Selection

    τhad+ EmissT trigger

    1 τhad, pT > 40 GeV

    ≥ 4 jets, pT > 20 GeV, at least one b-tagged

    Veto: ≥ 2 τhad and light leptons

    EmissT significance:EmissT

    0.5√∑

    pT> 13 GeV1/2

    EmissT > 65 GeV

    jjb combination (highest pT one)consistent with mtop

    Discriminating variable:

    mT =√

    2pτhadT E

    missT (1− cos∆φ)

    True-tau background estimatedfrom τ embedded µ+jets events(with tt̄ like event topology)

  • Charged Higgs Bosons VII 20/26Results – τhad+jets Channel

    Estimate multijet background byfitting EmissT shapes to data incontrol sample with inverted τ and bID.

  • Charged Higgs Bosons VIII 21/26Exclusion Limits (arXiv:1204.2760)

    Combination: Tevatron Limits:BR < 15− 20%

  • Charged Higgs Bosons IX 22/26Exclusion Limits – MSSM (arXiv:1204.2760)

    Combination:

  • Charged Higgs Bosons XI 23/26H+ → cs̄ (ATLAS-CONF-2011-094)

    H+ → cs̄ is sizable fortanβ < 1

    Suppress multijetbackground by requiringlarge EmissT and mT

    Kinematic fit with W andtop mass contraints to findbest H+ candidate

    AssumeBR(H+ → cs̄) = 100%, toset limits on BR(t → H+b)

  • Doubly Charged Higgs 24/26(ATLAS-CONF-2011-127)

    Predicted in left-rightsymmetric, Higgs triplet andlittle Higgs models

    Select same sign di-muons,pT > 20 GeV

    Look for resonance in di-muonmass spectrum

    95% confidence limits, exclude:Right-handed Higgs mass < 251 GeVLeft -handed Higgs mass < 355 GeVWith BR(H++ → µµ) = 100%

  • NMSSM a1 → µµ 25/26(ATLAS-CONF-2011-020)

    NMSSM: additional complexsinglet scalar field to solve µproblem→ 3 CP-even scalars (h1, h2, h3)and 2 CP-odd scalars (a1, a2)

    a1 can be very light, i.e.ma1 < 2mb!

    Selection:

    Opposite sign di-muons,pµT > 4 GeV

    Likelihood ratio selectionbased on µ+µ− vertex χ2

    and µ isolation

    Limit setting by fit to massspectrum

    Υ region excluded

  • Conclusions 26/26

    Many interesting beyond SM Higgs scenarios are beingprobed!

    New: Fermiphobic H → γγ, charged Higgs H+ → τνMSSM neutral h/H/A→ ττ , charged H+ → cs̄,H++ → µ+µ+, NMSSM a1 → µ+µ−

    No indication of a signal yet...but: lots of limits on cross sections and branching ratios!

    The searches are being continued with improved methods andnew data.→ There’s still lots of parameter space to cover within thisyear and after!

  • Backup 27/26

    BackupBackup

    Backup

  • Fermiophobic Higgs Boson 28/26

    Systematic uncertainties: Signal Model vs. MC:

    Fermiophobic and SM(arXiv:1202.1414) Limit:

  • Neutral MSSM Higgs Bosons – MSSM Higgs Sector 29/26

    2 Higgs-doublets → 5 Higgs bosonsΦ = H(CP = 1), h(CP = 1),A(CP = −1),H±

    Free parameters at tree level: mA, tanβ = vu/vd

    Fixed mass relations at tree level:m2H,h =

    12

    (m2A + m

    2Z ±

    √(m2A + m

    2Z )

    2 − 4m2Zm2A cos2 2β)

    m2h ≤ m2Z cos2 2β ≤ m2ZUpper mass bound modified byradiative corrections (depending onSUSY parameters)

    Benchmark scenarios (everythingfixed but mA, tanβ:

  • Neutral MSSM Higgs Bosons – MSSM Higgs Sector II 30/26

    Enhanced coupling to 3rd generation:

    Dominant production processes: Branching ratios:

  • Neutral MSSM Higgs Bosons – Final States andBackgrounds 31/26

    Final states considered:

    1 “lepton-hadron”: ττ → `τhad (3ν) with ` = e/µ

    2 “lepton-lepton”: ττ → eµ(4ν)

    3 “hadron-hadron”: ττ → τhadτhad (2ν)

    Signal and background samples:

    Signal process (mA = 120GeV , tanβ = 20) σ × BR [pb] Generatorbb̄A/H/h(→ ττ) ↘ mh = 118GeV 7.62/0.69/7.3 Sherpagg → A/H/h(→ ττ) mH = 130GeV 4.93/2.21/4.1 POWHegBackground process σ [pb] GeneratorW → `ν (` = e, µ, τ) 10.5× 103 AlpgenZ/γ∗ → `+`− (m`` > 10GeV ) 4.96× 103 Alpgen/Pythiatt̄ 165 MC@NLOSingle-top (t-, s- and Wt-channels) 58.7, 3.9, 13.1 MC@NLO/AcerDi-boson (WW , WZ and ZZ) 46.2, 18.0, 5.6 Herwig/MC@NLOQCD multijet ??? –

  • Neutral MSSM Higgs Bosons – MMC 32/26

    [rad]3Dθ∆0 0.05 0.1 0.15 0.2

    Arb

    itrar

    y un

    its

    0

    0.005

    0.01

    0.015 ATLAS Simulation

    Simulationττ→Z

    Probability function

    decayτ1-prong 50 [GeV]≤τ45

  • Neutral MSSM Higgs Bosons – Z → ττ Background 33/26

    Reliable model of mass distribution shape is essential (lowmass Higgs)

    Real Z → ττ data would be ideal, but it cannot be selectedsignal free

    Instead: use high purity Z → µµ sample (≈signal free, due tosmall Higgs muon coupling)

  • Neutral MSSM Higgs Bosons – Z → ττ Embedding 34/26

    Select Z → µµ dataevents

    Remove muon tracks andnearby calorimeter cells

    Simulate standaloneZ → ττ decays, so that τfour-momenta match theoriginal muon ones

    Merge into singleMC-data hybrid event

    Re-reconstruct objectsand EmissT

  • Neutral MSSM Higgs Bosons – Embedding II 35/26

    lep-had: lep-lep:

    [GeV]ττMMC m

    0 50 100 150 200 250 300

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    µ µ →* γEmbedded Z/

    MCτ τ →* γZ/

    channelshadτµ + hadτe

    -1L dt = 1.06 fb∫ = 7 TeV, s

    ATLAS Preliminary

    effective [GeV]ττm

    0 50 100 150 200 250 300

    Ent

    ries

    / 10

    GeV

    0

    100

    200

    300

    400

    500

    600

    µµ →* γEmbedded Z/

    MCττ →* γZ/

    PreliminaryATLAS

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    channelµe

    Replaces Z → ττ MC shapes in the following.

  • Neutral MSSM Higgs Bosons – Embedding III 36/26

    had-had:Z → ττ W → τν

    visible [GeV]ττm

    0 50 100 150 200

    Fra

    ctio

    n of

    Eve

    nts

    / 10

    GeV

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    µµ→*γEmbedded Z/

    MCττ→*γZ/

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    PreliminaryATLAS channelhadτhadτ

    visible [GeV]ττm

    0 50 100 150 200

    Fra

    ctio

    n of

    Eve

    nts

    / 20

    GeV

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    νµ→Embedded W

    MCντ→W

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    PreliminaryATLAS channelhadτhadτ

    Used as cross check.

  • Neutral MSSM Higgs Bosons – Background Estimation –QCD 37/26

    Separate QCD estimates for all final states using an“ABCD”-method. 4 regions based on:

    lepton-hadron:

    Charge product and lepton isolation, shape: region C

    lepton-lepton:

    Charge product and lepton isolation, shape: region B

    hadron-hadron:Charge product and Tau ID, shape: region B

    Subtract non QCD backgrounds in CRs B,C,D (for lep-had W+ jetsnormalization is fixed in high mT region)

    For lep-had, QCD in signal region A:

    nQCDA = rB/D × n(data−non QCD MC)C (similar for lep-lep & had-had)

  • Neutral MSSM Higgs Bosons – Estimation of QCD &W+jets in Lepton-Hadron 38/26Basic idea and assumptions

    Charge correlation: qlep × qτ =−1→ “Opposite Sign′′(OS) Signal+1→ “Same Sign′′(SS)

    =⇒ nBkgOS = nBkgSS + n

    QCDOS−SS + n

    W +JetsOS−SS + n

    ZOS−SS + n

    otherOS−SS

    ≈ 0

    Data with qlep × qτ = +1

    W+jets: n(OS) > n(SS)

    ⇒ W+jets Add-On

    Normalization from mT > 50 GeVcontrol sampleMMC mass shape from MC

    Shape and normalization for Z → ττ andother BGs from Embedding/MC

  • Neutral MSSM Higgs Bosons – Background Estimationhad-had 39/26

    QCD multijet background from ABCD

    Other backgrounds taken from simulation

    Corrections for trigger and tau “fake rate” appliedW /Z MC cross-checked with embedding

    Tau trigger and ID efficiencies are measured in Z → τhadτµFake tau trigger efficiency and tau fake rate measured inW → µν + jets

  • Neutral MSSM Higgs Bosons – Cross-check of 2Background Estimates – lep-had 40/26

    Same-Sign method: ABCD method:

    [GeV]ττMMC m

    0 50 100 150 200 250 300 350 400

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    350

    400

    [GeV]ττMMC m

    0 50 100 150 200 250 300 350 400

    Eve

    nts

    / 10

    GeV

    0

    50

    100

    150

    200

    250

    300

    350

    400Data 2011

    =20β, tanττ→A(120)/H/h) emb.(OS-SS)ττ→*(γZ/

    Others(OS-SS)W+jets (OS-SS)Same Signstat.

    channelshad

    τµ + hadτe

    -1 L = 1.06 fb∫ = 7TeV, sATLAS Preliminary

    [GeV]ττMMC m

    0 50 100 150 200 250 300 350 400

    Events

    / 1

    0 G

    eV

    0

    50

    100

    150

    200

    250

    300

    350Data 2011

    =20β, tan τ τ →A(120)/H/h

    ) emb.ττ→(*

    γZ/

    Others

    W+jets

    QCD multi-jet

    stat.

    ATLAS Preliminary

    -1Ldt = 1.06 fb∫ = 7 TeV, s

    channelshad

    τµ + hadτe

    Good agreement.

  • Neutral MSSM Higgs Bosons – Systematics 41/26

    ll/lh/hh W+jets Di-boson tt̄+ Z/γ∗ → Z/γ∗ → Signal,tanβ = 20single-top ee, µµ τ+τ− 120/120/200GeV

    σinclusive -/-/5 7 10 5/5/- 5 14/14/16

    Acceptance -/-/20 4/2/7 3/2/9 2/14/- 5/14/14 5/7/9

    e efficiency -/-/0.8 4/3.1/0.5 4/3.6/0.3 4/3.1/- 4/3.0/0.5 4/3.6/0.1

    µ efficiency -/-/0.3 2/1.2/0.4 2/1.1/0.0 2/1.3/- 2/1.8/0.4 2/1.0/0.1

    τ efficiency/fake rate -/-/21 -/9.1/15 -/9.1/13 -/48/- -/9.1/15 -/9.1/15

    Energy scales/resolution -/-/+34−21 2/+19−9 /

    +26−12 6/

    +5−4/12 1/

    +39−25/- 1/11/

    +63−23 1/

    +30−23/

    +9−8

    Luminosity -/-/3.7 3.7 3.7 3.7/3.7/- 3.7 3.7

    Total uncertainty -/-/+45−36 10/+23−16/

    +32−22 13/15/23 8/

    +64−56/- 9/21/

    +67−31 16/

    +35−30/

    +26−25

    Background estimation:

    Same Sign stat. 17%

    OS/SS ratio 19%

    W normalization 11%

    Z embedding

  • Charged Higgs Misidentified Lepton BackgroundEstimation 42/26

    Control samples, with only lepton ID changed:Tight sample, containing mostly true leptonsLoose sample, containing mostly fake leptons (looser ID&Isolation)Number of mis-IDed and real leptons: NLm, N

    Tm , N

    Lr , N

    Tr

    NL = NLm + NLr

    NT = NTm + NTr

    Number of mis-IDed events passing the selection is then defined as:NTm =

    pmpr−pm (prN

    L − NT )

    with pr =NTrNLr

    (from Z → `` events)

    and pm =NTmNLm

    (from multijet events)

  • Charged Higgs Systematic Uncertainties I 43/26

  • Charged Higgs Systematic Uncertainties II 44/26

  • Doubly Charged Higgs – Yields and More Plots 45/26

  • NMSSM a1 → µµ Systematic Uncertainties 46/26