icecube.wisc.eduhalzen/notes/week14-4.pdfPhysics of Massive Neutrinos Concha Gonzalez-Garcia Summary...
Embed Size (px)
Transcript of icecube.wisc.eduhalzen/notes/week14-4.pdfPhysics of Massive Neutrinos Concha Gonzalez-Garcia Summary...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Plan of Lectures
I. Standard Neutrino Properties and Mass Terms (Beyond Standard)
II. Effects of ν Mass: Neutrino Oscillations (Vacuum)
III. Matter Effects in Neutrino Oscillations
IV. The Emerging Picture and Some Lessons
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary I+II+III
• In the SM: ↔ mν ≡ 0– neutrinos are left-handed (≡ helicity -1): mν = 0 ⇒ chirality ≡ helicity– No distinction between Majorana or Dirac Neutrinos
• mν 6= 0 → Need to extend SM to add mν– breaking total lepton number (L = Le + Lµ + Lτ ) → Majorana ν: ν = νC– conserving total lepton number → Dirac ν: ν 6= νC– Always Lepton Mixing≡ breaking of Le × Lµ × Lτ
• Neutrino masses and mixing ⇒ Flavour oscillations• ν traveling through matter ⇒ Modification of oscillation pattern
• Atmospheric, K2K and MINOS (+ negative SBL searches)⇒ νµ → ντ with ∆m2 ∼ 2 × 10−3 eV2 and tan2 θ ∼ 1
• Solar and KamLAND⇒ νe → νµ, ντ with ∆m2 ∼ 8 × 10−5 eV2 and tan2 θ ∼ 0.4
• Can we fit all toegether? What can we learn from all this?Answer: Today
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Plan of Lecture IV
Emerging Picture and Some Lessons
3ν Oscillations
Some Lessons:
The Need of New Physics
The Possibility of Leptogenesis
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• We have learned:∗ Atmospheric νµ disappear (> 15σ) most likely to ντ∗ K2K: accelerator νµ disappear at L ∼ 250 Km with E-distortion (∼ 2.5–4σ)
∗ MINOS: accelerator νµ disappear at L ∼ 735 Km with E-distortion (∼ 5σ)
∗ Solar νe convert to νµ or ντ (> 7σ)
∗ KamLAND: reactor νe disappear at L ∼ 200 Km with E-distortion (& 3σ CL)
∗ LSND found evidence for νµ → νe but it is not confirmed
All this implies that neutrinos are massive
• We have important information (mostly constraints) from:∗ The line shape of the Z: Nweak = 3
∗ Limits from Short Distance Oscillation Searches at Reactor and Accelerators
∗ Direct mass measurements: 3H →3 He + e− + ν̄e and ν-less ββ decay
∗ From Astrophysics and Cosmology: BBN, CMBR, LSS ...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• We have learned:∗ Atmospheric νµ disappear (> 15σ) most likely to ντ∗ K2K: accelerator νµ disappear at L ∼ 250 Km with E-distortion (∼ 2.5–4σ)
∗ MINOS: accelerator νµ disappear at L ∼ 735 Km with E-distortion (∼ 5σ)
∗ Solar νe convert to νµ or ντ (> 7σ)
∗ KamLAND: reactor νe disappear at L ∼ 200 Km with E-distortion (& 3σ CL)
∗ LSND found evidence for νµ → νe but it is not confirmed
All this implies that neutrinos are massive
• We have important information (mostly constraints) from:∗ The line shape of the Z: Nweak = 3
∗ Limits from Short Distance Oscillation Searches at Reactor and Accelerators
∗ Direct mass measurements: 3H →3 He + e− + ν̄e and ν-less ββ decay
∗ From Astrophysics and Cosmology: BBN, CMBR, LSS ...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• We have learned:∗ Atmospheric νµ disappear (> 15σ) most likely to ντ∗ K2K: accelerator νµ disappear at L ∼ 250 Km with E-distortion (∼ 2.5–4σ)
∗ MINOS: accelerator νµ disappear at L ∼ 735 Km with E-distortion (∼ 5σ)
∗ Solar νe convert to νµ or ντ (> 7σ)
∗ KamLAND: reactor νe disappear at L ∼ 200 Km with E-distortion (& 3σ CL)
∗ LSND found evidence for νµ → νe but it is not confirmed
All this implies that neutrinos are massive
• We have important information (mostly constraints) from:∗ The line shape of the Z: Nweak = 3
∗ Limits from Short Distance Oscillation Searches at Reactor and Accelerators
∗ Direct mass measurements: 3H →3 He + e− + ν̄e and ν-less ββ decay
∗ From Astrophysics and Cosmology: BBN, CMBR, LSS ...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Solar+Atmospheric+Reactor+LBL 3ν Oscillations
U : 3 angles, 1 CP-phase+ (2 Majorana phases)
0
@
1 0 0
0 c23 s23
0 −s23 c23
1
A
0
@
c13 0 s13eiδ
0 1 0
−s13e−iδ 0 c13
1
A
0
@
c21 s12 0
−s12 c12 0
0 0 1
1
A
Two mass schemes
M
sola
r
sola
r
atm
osm m 1 3
∆ 2
∆ m
2
m 3
m 2
∆ m
m 1
m 2
NORMAL INVERTED
2
2ν oscillation analysis ⇒ ∆m221 = ∆m2� � ∆M2atm ' ±∆m232 ' ±∆m231
Generic 3ν mixing effects:– Effects due to θ13– Difference between Inverted and Normal– Interference of two wavelength oscillations– CP violation due to phase δ
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Solar+Atmospheric+Reactor+LBL 3ν Oscillations
U : 3 angles, 1 CP-phase+ (2 Majorana phases)
0
@
1 0 0
0 c23 s23
0 −s23 c23
1
A
0
@
c13 0 s13eiδ
0 1 0
−s13e−iδ 0 c13
1
A
0
@
c21 s12 0
−s12 c12 0
0 0 1
1
A
Two mass schemes
M
sola
r
sola
r
atm
osm m 1 3
∆ 2
∆ m
2
m 3
m 2
∆ m
m 1
m 2
NORMAL INVERTED
2
2ν oscillation analysis ⇒ ∆m221 = ∆m2� � ∆M2atm ' ±∆m232 ' ±∆m231Generic 3ν mixing effects:
– Effects due to θ13– Difference between Inverted and Normal– Interference of two wavelength oscillations– CP violation due to phase δ
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Neutrino Oscillations
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232∗ For θ13 = 0 solar and atmospheric oscillations decouple ⇒ Normal≡ Inverted
– Solar and KamLAND → ∆m221 = ∆m2� θ12 = θ�– Atmospheric and LBL → ∆m231 = ∆M2atm θ23 = θatm
∗ For θ13 6= 0– Solar and KamLAND: P 3νee = c413P 2νee (∆m212, θ12) + s413
– CHOOZ: PCHee ' 1 − 4c213s213 sin2(
∆m231
L
4E
)
– K2K+MINOS Probabilities Independent of θ12, ∆m221
4
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Neutrino Oscillations
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232∗ For θ13 = 0 solar and atmospheric oscillations decouple ⇒ Normal≡ Inverted
– Solar and KamLAND → ∆m221 = ∆m2� θ12 = θ�– Atmospheric and LBL → ∆m231 = ∆M2atm θ23 = θatm
∗ For θ13 6= 0– Solar and KamLAND: P 3νee = c413P 2νee (∆m212, θ12) + s413
– CHOOZ: PCHee ' 1 − 4c213s213 sin2(
∆m231
L
4E
)
– K2K+MINOS Probabilities Independent of θ12, ∆m221
4
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Neutrino Oscillations
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232∗ For θ13 = 0 solar and atmospheric oscillations decouple ⇒ Normal≡ Inverted
– Solar and KamLAND → ∆m221 = ∆m2� θ12 = θ�– Atmospheric and LBL → ∆m231 = ∆M2atm θ23 = θatm
∗ For θ13 6= 0– Solar and KamLAND: P 3νee = c413P 2νee (∆m212, θ12) + s413
– CHOOZ: PCHee ' 1 − 4c213s213 sin2(
∆m231
L
4E
)
– K2K+MINOS Probabilities Independent of θ12, ∆m221
4
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Neutrino Oscillations
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232∗ For θ13 = 0 solar and atmospheric oscillations decouple ⇒ Normal≡ Inverted
– Solar and KamLAND → ∆m221 = ∆m2� θ12 = θ�– Atmospheric and LBL → ∆m231 = ∆M2atm θ23 = θatm
∗ For θ13 6= 0– Solar and KamLAND: P 3νee = c413P 2νee (∆m212, θ12) + s413
– CHOOZ: PCHee ' 1 − 4c213s213 sin2(
∆m231
L
4E
)
– K2K+MINOS Probabilities Independent of θ12, ∆m221
4
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Neutrino Oscillations
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232∗ For θ13 = 0 solar and atmospheric oscillations decouple ⇒ Normal≡ Inverted
– Solar and KamLAND → ∆m221 = ∆m2� θ12 = θ�– Atmospheric and LBL → ∆m231 = ∆M2atm θ23 = θatm
∗ For θ13 6= 0– Solar and KamLAND: P 3νee = c413P 2νee (∆m212, θ12) + s413
– CHOOZ: PCHee ' 1 − 4c213s213 sin2(
∆m231
L
4E
)
– K2K+MINOS Probabilities Independent of θ12, ∆m221 4
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Atmospheric Neutrino Oscillation: Effect of θ13
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232 ⇒ neglect ∆m221 in ATM
Pantaleone 94; Used by many ...
Pee = 1 − 4s213,mc
213,m S31
Pµµ = 1 − 4s213,mc
213,ms
423 S31 − 4s
213,ms
223c
223 S21 − 4c
213,ms
223c
223 S32
Peµ = 4s213,mc
213,ms
223 S31
Sij = sin2
„
∆µ2ij4Eν
L
«
∆µ221 =∆m2
32
2
“
sin 2θ13sin 2θ13,m
− 1”
− EνVe
∆µ232 =∆m2
32
2
“
sin 2θ13sin 2θ13,m
+ 1”
+ EνVe
∆µ231 = ∆m232
sin 2θ13sin 2θ13,m
sin 2θ13,m =sin 2θ13
q
(cos 2θ13 ∓2EνVe∆m2
31
)2 + sin2 2θ13
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Atmospheric Neutrino Oscillation: Effect of θ13
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Hierarchical approximation: ∆m221 � ∆m231 ∼ ∆m232 ⇒ neglect ∆m221 in ATM
Pantaleone 94; Used by many ...
Pee = 1 − 4s213,mc
213,m S31
Pµµ = 1 − 4s213,mc
213,ms
423 S31 − 4s
213,ms
223c
223 S21 − 4c
213,ms
223c
223 S32
Peµ = 4s213,mc
213,ms
223 S31
Sij = sin2
„
∆µ2ij4Eν
L
«
∆µ221 =∆m2
32
2
“
sin 2θ13sin 2θ13,m
− 1”
− EνVe
∆µ232 =∆m2
32
2
“
sin 2θ13sin 2θ13,m
+ 1”
+ EνVe
∆µ231 = ∆m232
sin 2θ13sin 2θ13,m
sin 2θ13,m =sin 2θ13
q
(cos 2θ13 ∓2EνVe∆m2
31
)2 + sin2 2θ13
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Atmospheric Neutrino Oscillation: Effect of θ13Ahkmedov,Dighe,Lipari,Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK sub-GeV (e)
Normal
-1 -0.5 0 0.5 1
cosθ
0.8
0.9
1
1.1
1.2
1.3
Ne/
NeO
SK multi-GeV (e)
Normal
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
SK sub-GeV (e)
Inverted
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
SK multi-GeV (e)
Inverted
No Oscillationss213=0.00, s
223=0.35, ∆m
221=0
s213=0.04, s223=0.35, ∆m
221=0
s213=0.04, s223=0.65, ∆m
221=0
Ne
Ne0− 1 = Peµr̄(s223 − 1r̄ )
r̄ =Nµ0Ne0
Peµ = 4s213,mc
213,m sin
2(
∆m231
L
4Eνsin 2θ13
sin 2θ13,m
)
sin 2θ13,m =sin 2θ13
r
(cos 2θ13 ∓2EνVe∆m2
31
)2 + sin2 2θ13
• Multi-GeV : Enhancement due to MatterLarger Effect in NormalPossible Sensitivity to Mass Ordering
• Sub-GeV: Vacuum Osc: Smaller Effect
r ' 2 ⇒ θ23 <π4 ⇒ s223 < 12 ⇒ Ne(θ13) < Ne0
θ23 >π4 ⇒ s223 > 12 ⇒ Ne(θ13) > Ne0
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Atmospheric Neutrino Oscillation: Effect of θ13Ahkmedov,Dighe,Lipari,Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK sub-GeV (e)
Normal
-1 -0.5 0 0.5 1
cosθ
0.8
0.9
1
1.1
1.2
1.3
Ne/
NeO
SK multi-GeV (e)
Normal
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
SK sub-GeV (e)
Inverted
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
SK multi-GeV (e)
Inverted
No Oscillationss213=0.00, s
223=0.35, ∆m
221=0
s213=0.04, s223=0.35, ∆m
221=0
s213=0.04, s223=0.65, ∆m
221=0
Ne
Ne0− 1 = Peµr̄(s223 − 1r̄ )
r̄ =Nµ0Ne0
Peµ = 4s213,mc
213,m sin
2(
∆m231
L
4Eνsin 2θ13
sin 2θ13,m
)
sin 2θ13,m =sin 2θ13
r
(cos 2θ13 ∓2EνVe∆m2
31
)2 + sin2 2θ13
• Multi-GeV : Enhancement due to MatterLarger Effect in NormalPossible Sensitivity to Mass Ordering
• Sub-GeV: Vacuum Osc: Smaller Effect
r ' 2 ⇒ θ23 <π4 ⇒ s223 < 12 ⇒ Ne(θ13) < Ne0
θ23 >π4 ⇒ s223 > 12 ⇒ Ne(θ13) > Ne0
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
3–ν Atmospheric Neutrino Oscillation: Effect of θ13Ahkmedov,Dighe,Lipari,Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK sub-GeV (e)
Normal
-1 -0.5 0 0.5 1
cosθ
0.8
0.9
1
1.1
1.2
1.3
Ne/
NeO
SK multi-GeV (e)
Normal
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
SK sub-GeV (e)
Inverted
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
SK multi-GeV (e)
Inverted
No Oscillationss213=0.00, s
223=0.35, ∆m
221=0
s213=0.04, s223=0.35, ∆m
221=0
s213=0.04, s223=0.65, ∆m
221=0
Ne
Ne0− 1 = Peµr̄(s223 − 1r̄ )
r̄ =Nµ0Ne0
Peµ = 4s213,mc
213,m sin
2(
∆m231
L
4Eνsin 2θ13
sin 2θ13,m
)
sin 2θ13,m =sin 2θ13
r
(cos 2θ13 ∓2EνVe∆m2
31
)2 + sin2 2θ13
• Multi-GeV : Enhancement due to MatterLarger Effect in NormalPossible Sensitivity to Mass Ordering
• Sub-GeV: Vacuum Osc: Smaller Effect
r ' 2 ⇒ θ23 <π4 ⇒ s223 < 12 ⇒ Ne(θ13) < Ne0
θ23 >π4 ⇒ s223 > 12 ⇒ Ne(θ13) > Ne0
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
∆m221 effects in ATM Data
Smirnov, Peres 99,01; Fogli, Lisi, Marrone 01; MC G-G, Maltoni 02; MCG-G, Maltoni, Smirnov hep-ph/0408170
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Neglecting θ13:
Pee = 1 − Pe2Peµ = c
223Pe2
Pµµ = 1 − c423Pe2 − 2s223c223[
1 −√
1 − Pe2 cosφ]
Pe2 = sin2 2θ12,m sin
2(
∆m221
L
4Eνsin 2θ12
sin 2θ12,m
)
sin 2θ12,m =sin 2θ12
√
(cos 2θ12 ∓ 2EνVe∆m221
)2 + sin2 2θ12
φ ≈ (∆m231 + s212 ∆m221) L2Eν
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
∆m221 effects in ATM Data
Smirnov, Peres 99,01; Fogli, Lisi, Marrone 01; MC G-G, Maltoni 02; MCG-G, Maltoni, Smirnov hep-ph/0408170
• In general one has to solve: i d~νdt
= H ~ν H = U · Hd0 · U † + V
Hd0 =1
2Eνdiag
(
−∆m221, 0, ∆m232)
V = diag(
±√
2GF Ne, 0, 0)
• Neglecting θ13:
Pee = 1 − Pe2Peµ = c
223Pe2
Pµµ = 1 − c423Pe2 − 2s223c223[
1 −√
1 − Pe2 cosφ]
Pe2 = sin2 2θ12,m sin
2(
∆m221
L
4Eνsin 2θ12
sin 2θ12,m
)
sin 2θ12,m =sin 2θ12
√
(cos 2θ12 ∓ 2EνVe∆m221
)2 + sin2 2θ12
φ ≈ (∆m231 + s212 ∆m221) L2Eν
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
∆m221 effects in ATM Data
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK sub-GeV (e)
Normal
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
SK sub-GeV (e)
Inverted
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK multi-GeV (e)
Normal
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
SK multi-GeV (e)
Inverted
Ne
Ne0− 1 = Pe2r̄(c223 − 1r̄ )
Pe2 = sin2 2θ12,m sin
2(
∆m221
L
4Eνsin 2θ12
sin 2θ12,m
)
sin 2θ12,m =sin2 2θ12
r
(cos 2θ12 ∓2EVe∆m2
21
)2 + sin2 2θ12
For Sub-GeV:Pe2 =
(∆m221)2
(2EVe)2sin2 2θ12 sin
2 VeL
2
θ23 <π4 ⇒ c223 > 12 ⇒ Ne(θ13) > Ne0
θ23 >π4 ⇒ c223 < 12 ⇒ Ne(θ13) < Ne0
⇒ Sensitiv to Deviations from Maximal θ23⇒ Sensitivity to Octant of θ23
(even for vanishing θ13)⇒ Effect proportional to (∆m221)2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
∆m221 effects in ATM Data
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK sub-GeV (e)
Normal
-1 -0.5 0 0.5 10.8
0.9
1
1.1
1.2
1.3
SK sub-GeV (e)
Inverted
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
Ne
/ Ne0
SK multi-GeV (e)
Normal
-1 -0.5 0 0.5 1
cos θ
0.8
0.9
1
1.1
1.2
1.3
SK multi-GeV (e)
Inverted
Ne
Ne0− 1 = Pe2r̄(c223 − 1r̄ )
Pe2 = sin2 2θ12,m sin
2(
∆m221
L
4Eνsin 2θ12
sin 2θ12,m
)
sin 2θ12,m =sin2 2θ12
r
(cos 2θ12 ∓2EVe∆m2
21
)2 + sin2 2θ12
For Sub-GeV:Pe2 =
(∆m221)2
(2EVe)2sin2 2θ12 sin
2 VeL
2
θ23 <π4 ⇒ c223 > 12 ⇒ Ne(θ13) > Ne0
θ23 >π4 ⇒ c223 < 12 ⇒ Ne(θ13) < Ne0
⇒ Sensitiv to Deviations from Maximal θ23⇒ Sensitivity to Octant of θ23
(even for vanishing θ13)⇒ Effect proportional to (∆m221)2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Beyond Hierarchical: Effect θ13 × ∆m221 in ATMSmirnov, Peres 01,03, MC G-G, Maltoni 02
For sub-GeV energiesNe
N0e− 1 ' Pe2r(c223 −
1
r) + 2s̃213r(s
223 −
1
r) − rs̃13c̃213 sin 2θ23(cos δCP R2 − sin δCP I2)
Pe2 = sin2 2θ12,m sin
2 φm2
sin 2θ12,m =sin 2θ12
r
(cos 2θ12∓ 2EνVe∆m2
21
)2+sin2 2θ12
R2 = −sin 2θ12,m cos 2θ12,m sin2 φm
2I2 = −
12sin 2θ12,m sin φm
θ̃13 ≈ θ13“
1 + 2EνVe∆m2
31
”
φ ≈ (∆m231 + s212 ∆m
221)
L2Eν
-1 -0.5 0 0.5 1cos θ
1.05
1.1
1.15
1.2
1.25
Ne
/ N0 e
Normal
-1 -0.5 0 0.5 1cos θ
Invertedδ
CP = −π
δCP
= −2π/3δ
CP = −π/3
δCP
= 0
δCP
= +π/3δ
CP = +2π/3
δCP
= +π
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaGlobal Analysis: Three Neutrino OscillationsM.C. G-G, M.Maltoni, ArXiV/0704.1800
★
0.3 0.4 0.5 0.6 0.7
tan2 θ12
6
7
8
9
10
∆m2 21
[10-
5 eV
2 ]
★
0 0.01 0.02 0.03 0.04 0.05
sin2 θ13
★
0.3 0.5 1 2 3
tan2 θ23
-4
-2
0
2
4
∆m2 31
[10-
3 eV
2 ]
★
0 0.01 0.02 0.03 0.04 0.05
sin2 θ13
0 0.01 0.02 0.03 0.04 0.05
sin2 θ13
0
60
120
180
240
300
360
δ CP
0 5 10 15
∆m221 [10-5
eV2]
0
5
10
15
∆χ2
w/o K
amLand
0.3 0.4 0.5 0.6 0.7 0.8
tan2 θ12
-4 -2 0 2 4
∆m231 [10-3
eV2]
0
5
10
15
∆χ2
w/o
LB
L
0.3 0.5 1 2 3
tan2 θ23
0 0.05 0.1 0.15
sin2 θ13
0
5
10
15
∆χ2
ATM only
ATM
+CH
OO
Z
+ LB
L
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Global Analysis: Three Neutrino Oscillations
The derived ranges:
∆m221 = 7.7+0.22−0.21
(
+0.67−0.61
)
× 10−5 eV2∣
∣∆m231∣
∣ = 2.37 ± 0.17 (0.46) × 10−3 eV2
|ULEP |3σ =
0
@
0.79 → 0.86 0.50 → 0.61 0.00 → 0.20
0.25 → 0.53 0.47 → 0.73 0.56 → 0.79
0.21 → 0.51 0.42 → 0.69 0.61 → 0.83
1
A
with structure
|ULEP| '
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12 (1 −O(λ) + �) 12(1 + O(λ) − �) 1√212(1 −O(λ) − �) − 12(1 + O(λ) − �) 1√2
λ ∼ 0.2� . 0.2
very different from quark’s |UCKM| '
1 O(λ) O(λ3)O(λ) 1 O(λ2)O(λ3) O(λ2) 1
λ ∼ 0.2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Global Analysis: Three Neutrino Oscillations
The derived ranges:
∆m221 = 7.7+0.22−0.21
(
+0.67−0.61
)
× 10−5 eV2∣
∣∆m231∣
∣ = 2.37 ± 0.17 (0.46) × 10−3 eV2
|ULEP |3σ =
0
@
0.79 → 0.86 0.50 → 0.61 0.00 → 0.20
0.25 → 0.53 0.47 → 0.73 0.56 → 0.79
0.21 → 0.51 0.42 → 0.69 0.61 → 0.83
1
A
with structure
|ULEP| '
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12 (1 −O(λ) + �) 12(1 + O(λ) − �) 1√212(1 −O(λ) − �) − 12(1 + O(λ) − �) 1√2
λ ∼ 0.2� . 0.2
very different from quark’s |UCKM| '
1 O(λ) O(λ3)O(λ) 1 O(λ2)O(λ3) O(λ2) 1
λ ∼ 0.2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Global Analysis: Three Neutrino Oscillations
The derived ranges:
∆m221 = 7.7+0.22−0.21
(
+0.67−0.61
)
× 10−5 eV2∣
∣∆m231∣
∣ = 2.37 ± 0.17 (0.46) × 10−3 eV2
|ULEP |3σ =
0
@
0.79 → 0.86 0.50 → 0.61 0.00 → 0.20
0.25 → 0.53 0.47 → 0.73 0.56 → 0.79
0.21 → 0.51 0.42 → 0.69 0.61 → 0.83
1
A
with structure
|ULEP| '
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12 (1 −O(λ) + �) 12(1 + O(λ) − �) 1√212(1 −O(λ) − �) − 12(1 + O(λ) − �) 1√2
λ ∼ 0.2� . 0.2
very different from quark’s |UCKM| '
1 O(λ) O(λ3)O(λ) 1 O(λ2)O(λ3) O(λ2) 1
λ ∼ 0.2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Open Questions
We still ignore: { (1) Is θ13 6= 0? How small?(2) Is θ23 = π4 ? If not, is it > or
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )
– A gauge invariant fermion mass is generatedby interaction with the Higgs field λffLφfR → mf = λfv
(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SM
And it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Some Lessons: New Physics
A fermion mass can be seen as at a Left-Right transition
mffLfR (this is not SU(2)L gauge invariant)
If the SM is the fundamental theory:– All terms in lagrangian (including masses) must be
{
gauge invariant
renormalizable (dim ≤ 4 )– A gauge invariant fermion mass is generated
by interaction with the Higgs field λffLφfR → mf = λfv(v ≡ Higgs vacuum expectation value ∼ 250 GeV)
– But there are no right-handed neutrinos⇒ No renormalizable gauge-invariant operator for tree level ν mass
– SM gauge invariance also implies the accidental symmetryG
globalSM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ⇒ mν = 0 to all orders
Thus the most striking implication of ν masses:
There is New Physics Beyond the SMAnd it is also the only solid evidence! To go further one has to be cautious. . .
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbers
Implications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeV
But this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
If SM is an effective low energy theory, for E � ΛNP– The same particle content as the SM and same pattern of symmetry breaking– But there can be non-renormalizable
(dim> 4) operatorsL = LSM+
∑
n
1
Λn−4NPOn
First NP effect ⇒ dim=5 operatorThere is only one! L5 =
Zνij
ΛNP
(
φ̃†LLj
)(
LcLiφ̃∗)
which after symmetry breakinginduces a ν Majorana mass (Mν)ij =
Zνij
2
v2
ΛNP
L5 breaks total lepton and lepton flavour numbersImplications:– It is natural that ν mass is the first evidence of NP
– Naturally mν � other fermions masses ∼ λfv– mν >
√
∆m2atm ∼ 0.05 eV ⇒ ΛNP < 1015 GeVBut this is scale was already known to particle physicists...
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Lessons: The Scale of New Physics
mν >√
∆m2atm ∼ 0.05eV ⇒ 1010 < ΛNP < 1015GeV New Physics Scaleclose to Grand Uni-fication scale
Also the generated neutrino mass term is Majorana :⇒ It violates total lepton number
L5 =Zνij
ΛNP
(
φ̃†LLj
) (
LcLiφ̃∗)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-Saw
Simplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scale
Below EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”
⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
The See-SawSimplest NP: add right-handed νR (=SM singlet) neutrinos
Well above the electroweak (EW) scale
−LNP =1
2MRijνRiνR
cj + λ
νijνRiφ̃
†LLj + h.c..
νR is a EW singlet ⇒ MRij >> EW scaleBelow EW symmetry breaking scale (E � MR):a) mD = λνv ∼ mass of other fermions is generatedb) νR are so heavy that can be “integrated out”⇒
E � MR
LNP ⇒ L5 =(λνT λν)ij
MR
(
φ̃†LLj
) (
LcLiφ̃∗)
⇒ mν = mTD1
MRmD
This
isthe
see-sa
w
Lessons:– LNP contains 18 parameters which we want to know– L5 contains 9 parameters which we can measure⇒ Same O5 can give very different LNP⇒ It is difficult to “imply” bottom-up (model independently)
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition
• But the SM fails on two points:– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-GarciaLeptogenesis
Baryogenesis and the SM
• From Nucleosytesys and CMBR data ⇒ YB =nb − nb
s =nbs ∼ 10−10
• YB can be dynamically generated ifThree Sakharov Conditions are verified:
– Baryon number is violated– C and CP are violated– Departure from thermal equilibrium
• The SM verifies these conditions:
→ Conserves B −L but violates B + L→ CP violation due to δCKM→ Departure from thermal equilibrium
at Electroweak Phase Transition• But the SM fails on two points:
– With the bound of SM Higgs mass the EWPT is not strong first order PT– CKM CP violation is too suppressed
⇓YB,SM � 10−10
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)
⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Leptogenesis
• From the analysis of oscillation data ⇒ mν3 & 0.05 eV
• If mν is generated via the See-saw mechanism
−LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj ⇒ mν ∼λ2〈φ〉2MR
}(MνR3/λ23 . 1015 GeV)⇒ Lepton Number is Violated (MR)
⇒ New Sources of CP violation λ
⇒ Decay of νR can be out of equilibrium(if ΓνR � Universe expansion rate) ⇒ ΓνR � H
∣
∣
T=MνR
⇓Leptogenesis ≡ generation of lepton asymmetry YL
• At the electroweak transition sphaleron processes:⇒ YL is transformed in YB ' −YL2
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia• In the the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
– In the Early Universe decay of heavy νR: Γ(νR → φ lL) =1
8π
∑
i
(λλ†)2iiMνRi
– CP can be violated at 1-loop
l
νR
φ
6=
l̄
νR
φ̄
(This requires 3 lightgenerations and at least2νR)
�L =Γ(νR → φ lL) − Γ(νR → φ lL)
Γ(νR → φ lL) + Γ(νR → φ lL)= −
1
8π
X
k
Im[(λλ†)2k1]
(λλ†)11× f
„
MνRkMνR1
«
⇒ |�L| . 0.1MνR1〈φ〉2
(mν3 − mν1)
YL =nνRs
�L d ∼ 10−3d �L nνR ≡ density of νR (d < 1 ≡ dilution factor)
Out of Equilibrium condition ΓνR � H∣
∣
T=MνR⇒ m̃1 ≡ (λλ
†)211〈φ〉2
MνR1. 5 × 10−3eV
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia• In the the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
– In the Early Universe decay of heavy νR: Γ(νR → φ lL) =1
8π
∑
i
(λλ†)2iiMνRi
– CP can be violated at 1-loop
l
νR
φ
6=
l̄
νR
φ̄
(This requires 3 lightgenerations and at least2νR)
�L =Γ(νR → φ lL) − Γ(νR → φ lL)
Γ(νR → φ lL) + Γ(νR → φ lL)= −
1
8π
X
k
Im[(λλ†)2k1]
(λλ†)11× f
„
MνRkMνR1
«
⇒ |�L| . 0.1MνR1〈φ〉2
(mν3 − mν1)
YL =nνRs
�L d ∼ 10−3d �L nνR ≡ density of νR (d < 1 ≡ dilution factor)
Out of Equilibrium condition ΓνR � H∣
∣
T=MνR⇒ m̃1 ≡ (λλ
†)211〈φ〉2
MνR1. 5 × 10−3eV
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia• In the the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
– In the Early Universe decay of heavy νR: Γ(νR → φ lL) =1
8π
∑
i
(λλ†)2iiMνRi
– CP can be violated at 1-loop
l
νR
φ
6=
l̄
νR
φ̄
(This requires 3 lightgenerations and at least2νR)
�L =Γ(νR → φ lL) − Γ(νR → φ lL)
Γ(νR → φ lL) + Γ(νR → φ lL)= −
1
8π
X
k
Im[(λλ†)2k1]
(λλ†)11× f
„
MνRkMνR1
«
⇒ |�L| . 0.1MνR1〈φ〉2
(mν3 − mν1)
YL =nνRs
�L d ∼ 10−3d �L nνR ≡ density of νR (d < 1 ≡ dilution factor)
Out of Equilibrium condition ΓνR � H∣
∣
T=MνR⇒ m̃1 ≡ (λλ
†)211〈φ〉2
MνR1. 5 × 10−3eV
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia• In the the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
– In the Early Universe decay of heavy νR: Γ(νR → φ lL) =1
8π
∑
i
(λλ†)2iiMνRi
– CP can be violated at 1-loop
l
νR
φ
6=
l̄
νR
φ̄
(This requires 3 lightgenerations and at least2νR)
�L =Γ(νR → φ lL) − Γ(νR → φ lL)
Γ(νR → φ lL) + Γ(νR → φ lL)= −
1
8π
X
k
Im[(λλ†)2k1]
(λλ†)11× f
„
MνRkMνR1
«
⇒ |�L| . 0.1MνR1〈φ〉2
(mν3 − mν1)
YL =nνRs
�L d ∼ 10−3d �L nνR ≡ density of νR (d < 1 ≡ dilution factor)
Out of Equilibrium condition ΓνR � H∣
∣
T=MνR⇒ m̃1 ≡ (λλ
†)211〈φ〉2
MνR1. 5 × 10−3eV
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia• In the the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
– In the Early Universe decay of heavy νR: Γ(νR → φ lL) =1
8π
∑
i
(λλ†)2iiMνRi
– CP can be violated at 1-loop
l
νR
φ
6=
l̄
νR
φ̄
(This requires 3 lightgenerations and at least2νR)
�L =Γ(νR → φ lL) − Γ(νR → φ lL)
Γ(νR → φ lL) + Γ(νR → φ lL)= −
1
8π
X
k
Im[(λλ†)2k1]
(λλ†)11× f
„
MνRkMνR1
«
⇒ |�L| . 0.1MνR1〈φ〉2
(mν3 − mν1)
YL =nνRs
�L d ∼ 10−3d �L nνR ≡ density of νR (d < 1 ≡ dilution factor)
Out of Equilibrium condition ΓνR � H∣
∣
T=MνR⇒ m̃1 ≡ (λλ
†)211〈φ〉2
MνR1. 5 × 10−3eV
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• In the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
Mν =
(
0 mD
mTD MR
)
mD = λ〈φ〉 is a 3 × 3 matrix
MR is a 3 × 3 symmetric matrix
⇒ Mν has 6 physical phases
⇒ It is easy to generate �L ∼ 10−6
⇒ mνlight = mTDM−1N mD has 3 physical phasesOscillation experiments can only see one of these three phases
⇒ No direct correspondence between CPV in leptogenesis and CPV in oscillations
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• In the See-saw mechanism −LNP = 12MRijνRiνRcj + λνijνRiφ̃†LLj
Mν =
(
0 mD
mTD MR
)
mD = λ〈φ〉 is a 3 × 3 matrix
MR is a 3 × 3 symmetric matrix
⇒ Mν has 6 physical phases
⇒ It is easy to generate �L ∼ 10−6
⇒ mνlight = mTDM−1N mD has 3 physical phasesOscillation experiments can only see one of these three phases
⇒ No direct correspondence between CPV in leptogenesis and CPV in oscillations
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
• The final YB depends on:
– �L the CP asymmetry
– MνR1 the mass of the lightest νR
– m̃1 ≡ (λλ†)2
11〈φ〉2
MνR1the effective neutrino mass
– m2ν1 + m2ν2
+ m2ν3 the sum of the light neutrinos mass squared
• To generate the required YB :
– MνR1 & 4 × 108 GeV
– mν3 . 0.12 eV
– Large CP phasesThe CP violating phase relevant for leptogenesismay not be the same as the one relevant for oscillations
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary
• Neutrino oscillation searches have shown us
– ∆m231 ∼ 2 × 10−3 eV2 and ∆m221 ∼ 8 × 10−5 eV2 ⇒ ν’s are massive
–|ULEP| '
0
B
@
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12(1 −O(λ) + �) 1
2(1 + O(λ) − �) 1√
212(1 −O(λ) − �) − 1
2(1 + O(λ) − �) 1√
2
1
C
A
λ ∼ 0.2� . 0.2
⇒ Different from UCKM
• mν 6= 0 ⇒ Need to extend SM It can be done:
(a) breaking total lepton number → Majorana ν : ν = νC(b) conserving total lepton number → Dirac ν : ν 6= νC
• Majorana ν′s are more Natural: appear generically if SM is a LE effective theory– ΛNP . 1015 GeV
– Results Fit well with GUT expectations
– Leptogenesis may explain the baryon asymmetry
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary
• Neutrino oscillation searches have shown us
– ∆m231 ∼ 2 × 10−3 eV2 and ∆m221 ∼ 8 × 10−5 eV2 ⇒ ν’s are massive
–|ULEP| '
0
B
@
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12(1 −O(λ) + �) 1
2(1 + O(λ) − �) 1√
212(1 −O(λ) − �) − 1
2(1 + O(λ) − �) 1√
2
1
C
A
λ ∼ 0.2� . 0.2
⇒ Different from UCKM
• mν 6= 0 ⇒ Need to extend SM It can be done:
(a) breaking total lepton number → Majorana ν : ν = νC(b) conserving total lepton number → Dirac ν : ν 6= νC
• Majorana ν′s are more Natural: appear generically if SM is a LE effective theory– ΛNP . 1015 GeV
– Results Fit well with GUT expectations
– Leptogenesis may explain the baryon asymmetry
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary
• Neutrino oscillation searches have shown us
– ∆m231 ∼ 2 × 10−3 eV2 and ∆m221 ∼ 8 × 10−5 eV2 ⇒ ν’s are massive
–|ULEP| '
0
B
@
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12(1 −O(λ) + �) 1
2(1 + O(λ) − �) 1√
212(1 −O(λ) − �) − 1
2(1 + O(λ) − �) 1√
2
1
C
A
λ ∼ 0.2� . 0.2
⇒ Different from UCKM
• mν 6= 0 ⇒ Need to extend SM It can be done:
(a) breaking total lepton number → Majorana ν : ν = νC(b) conserving total lepton number → Dirac ν : ν 6= νC
• Majorana ν′s are more Natural: appear generically if SM is a LE effective theory– ΛNP . 1015 GeV
– Results Fit well with GUT expectations
– Leptogenesis may explain the baryon asymmetry
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Summary
• Neutrino oscillation searches have shown us
– ∆m231 ∼ 2 × 10−3 eV2 and ∆m221 ∼ 8 × 10−5 eV2 ⇒ ν’s are massive
–|ULEP| '
0
B
@
1√2(1 + O(λ)) 1√
2(1 −O(λ)) �
− 12(1 −O(λ) + �) 1
2(1 + O(λ) − �) 1√
212(1 −O(λ) − �) − 1
2(1 + O(λ) − �) 1√
2
1
C
A
λ ∼ 0.2� . 0.2
⇒ Different from UCKM
• mν 6= 0 ⇒ Need to extend SM It can be done:
(a) breaking total lepton number → Majorana ν : ν = νC(b) conserving total lepton number → Dirac ν : ν 6= νC
• Majorana ν′s are more Natural: appear generically if SM is a LE effective theory– ΛNP . 1015 GeV
– Results Fit well with GUT expectations
– Leptogenesis may explain the baryon asymmetry
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Conclusions
• Still open questions { Is θ13 6= 0?Is there CP violation in the leptons (is δ 6= 0, π)?Is θ23 large or maximal?Normal or Inverted mass ordering?Are neutrino masses:hierarchical: mi − mj ∼ mi + mj ?degenerated: mi − mj � mi + mj ?
Dirac or Majorana? what about the Majorana Phases?. . .
• To answer:Proposed new generation ν osc experiments:
– LBL with Conventional Superbeams and/or β beams and/or ν-factory:– Medium Baseline Reactor Experiment
Also no-oscillation experiments:
– ν-less ββ decay,3H beta decay– Interesting input from cosmological data
Rich and Challenging Experimental Program
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Conclusions
• Still open questions { Is θ13 6= 0?Is there CP violation in the leptons (is δ 6= 0, π)?Is θ23 large or maximal?Normal or Inverted mass ordering?Are neutrino masses:hierarchical: mi − mj ∼ mi + mj ?degenerated: mi − mj � mi + mj ?
Dirac or Majorana? what about the Majorana Phases?. . .• To answer:
Proposed new generation ν osc experiments:
– LBL with Conventional Superbeams and/or β beams and/or ν-factory:– Medium Baseline Reactor Experiment
Also no-oscillation experiments:
– ν-less ββ decay,3H beta decay– Interesting input from cosmological data
Rich and Challenging Experimental Program
-
Physics of Massive Neutrinos Concha Gonzalez-Garcia
Conclusions
• Still open questions { Is θ13 6= 0?Is there CP violation in the leptons (is δ 6= 0, π)?Is θ23 large or maximal?Normal or Inverted mass ordering?Are neutrino masses:hierarchical: mi − mj ∼ mi + mj ?degenerated: mi − mj � mi + mj ?
Dirac or Majorana? what about the Majorana Phases?. . .• To answer:
Proposed new generation ν osc experiments:
– LBL with Conventional Superbeams and/or β beams and/or ν-factory:– Medium Baseline Reactor Experiment
Also no-oscillation experiments:
– ν-less ββ decay,3H beta decay– Interesting input from cosmological data
Rich and Challenging Experimental Program