Giovanni S. Alberti

24
Regularity theory for Maxwell’s equations Giovanni S. Alberti MaLGa - Machine learning Genova Center University of Genoa January

Transcript of Giovanni S. Alberti

Page 1: Giovanni S. Alberti

Regularity theory for Maxwell’s equations

Giovanni S. Alberti

MaLGa - Machine learning Genova CenterUniversity of Genoa

13 January 2021

Page 2: Giovanni S. Alberti

Problem formulation

Time-harmonic Maxwell’s equations curlH = −i(ωε+ iσ)E + Je in Ω,curlE = iωµH + Jm in Ω,E × ν = 0 on ∂Ω,

withE,H ∈ H(curl,Ω) = F ∈ L2(Ω;C3) : curlF ∈ L2(Ω;C3).

Main regularity questions:I E,H ∈ H1

I E,H ∈ C0,α

I E,H ∈ Hk , E,H ∈ Ck,α

2

Page 3: Giovanni S. Alberti

References

C. Weber.Regularity theorems for Maxwell’s equations.Math. Methods Appl. Sci., 3(4):523–536, 1981.

Jukka Saranen.On an inequality of Friedrichs.Math. Scand., 51(2):310–322 (1983), 1982.

M. Costabel.A remark on the regularity of solutions of Maxwell’sequations on Lipschitz domains.Mathematical Methods in the Applied Sciences,12(4):365–368, 1990.

Hong-Ming Yin.Regularity of weak solution to Maxwell’s equationsand applications to microwave heating.J. Differential Equations, 200(1):137–161, 2004.

Peter Kuhn and Dirk Pauly.Regularity results for generalized electro-magneticproblems.Analysis (Munich), 30(3):225–252, 2010.

Giovanni S. Alberti and Yves Capdeboscq.Elliptic regularity theory applied to time harmonicanisotropic Maxwell’s equations with less thanLipschitz complex coefficients.SIAM J. Math. Anal., 46(1):998–1016, 2014.

Manas Kar and Mourad Sini.AnHs,p(curl;Ω) estimate for the Maxwell system.Math. Ann., 364(1-2):559–587, 2016.

G. S. Alberti and Y. Capdeboscq.Lectures on elliptic methods for hybrid inverseproblems.Societe Mathematique de France, Paris, 2018.

Giovanni S. Alberti.Holder regularity for Maxwell’s equations underminimal assumptions on the coefficients.Calc. Var. Partial Differential Equations, 57(3), 2018.

Basang Tsering-xiao and Wei Xiang.Regularity of solutions to time-harmonic Maxwell’ssystem with lower than Lipschitz coefficients.Nonlinear Anal., 192:111693, 29, 2020.

3

Page 4: Giovanni S. Alberti

Outline

Interior regularity

Global regularity

What else?

4

Page 5: Giovanni S. Alberti

Interior regularity

We consider the regularity of the solutions

E,H ∈ H(curl,Ω)

to

curlH = −i

γ︷ ︸︸ ︷(ωε+ iσ)E + Je in Ω,

curlE = iωµH + Jm in Ω,

in a compact setK b Ω.

5

Page 6: Giovanni S. Alberti

Warm up

Let’s consider the limit ω → 0:curlE = iωµHcurlH = −i(ωε+ iσ)E + Je

=⇒

curlE = 0curlH = σE + Je

Writing E = ∇qE , this yields the conductivity equation for the electric potential qE

−div(σ∇qE) = div Je

Elliptic regularity:I σ ∈W 1,3 =⇒ qE ∈ H2 =⇒ E ∈ H1

I σ ∈ C0,α =⇒ qE ∈ C1,α =⇒ E ∈ C0,α

I Higher regularityI . . .

6

Page 7: Giovanni S. Alberti

Warm up 2

Let’s study H1 regularity in homogeneous isotropic media:curlH = −iγ0E + Je in Ω,curlE = iωµ0H + Jm in Ω.

with sources

Je, Jm ∈ H(div,Ω) = F ∈ L2(Ω;C3) : divF ∈ L2(Ω;C3).

Key observation: divE = −iγ−1

0 div Je ∈ L2(Ω)curlE = iωµ0H + Jm ∈ L2(Ω)

?=⇒ E ∈ H1

loc(Ω)

7

Page 8: Giovanni S. Alberti

Gaffney-Friedrichs Inequality (without boundary)

TheoremWe have

H(curl,Ω) ∩H(div,Ω) ⊆ H1loc(Ω)

and‖∇F‖L2(K) . ‖ curlF‖L2(Ω) + ‖ divF‖L2(Ω) + ‖F‖L2(Ω).

Proof.I Helmholtz decomposition: F = ∇q + curl Φ with div Φ = 0

I By elliptic regularity applied to

−∆Φ = curl curl Φ = curlF

we obtain Φ ∈ H2loc(Ω), so that

curl Φ ∈ H1loc(Ω).

I By elliptic regularity applied to

−∆q = −div∇q = −divF

we obtain q ∈ H2loc(Ω), so that

∇q ∈ H1loc(Ω).

8

Page 9: Giovanni S. Alberti

Basic assumptions

curlH = −i

γ︷ ︸︸ ︷(ωε+ iσ)E + Je in Ω,

curlE = iωµH + Jm in Ω,

I frequency ω > 0

I the coefficients ε, σ ∈ L∞(Ω;R3×3

)and µ ∈ L∞

(Ω;C3×3

)are elliptic:

Λ−1 |η|2 ≤ ξ · εξ, ξ ∈ R3,

Λ−1 |η|2 ≤ ξ ·(µ+ µT

)ξ, ξ ∈ R3,

I sources Je, Jm ∈ L2(Ω;C3)

9

Page 10: Giovanni S. Alberti

H1 regularity

curlH = −iγE + Je in Ω,curlE = iωµH + Jm in Ω,

TheoremIf ε, σ, µ ∈W 1,3 and Je, Jm ∈ H(div,Ω) then E,H ∈ H1

loc(Ω).

Proof.Assume for simplicity ε, µ ∈W 1,∞.I Helmholtz decomposition: E = ∇qE + curl ΦE , H = ∇qH + curl ΦH

I By elliptic regularity applied to

−∆ΦE = iωµH + Jm−∆ΦH = −iγE + Je

we obtain ΦE ,ΦH ∈ H2loc.

I By elliptic regularity applied to

− div (µ∇qH) = div(µ curl ΦH − iω−1Jm

)∈ L2

−div (γ∇qE) = div (γ curl ΦE + iJe) ∈ L2

we obtain qE , qH ∈ H2loc(Ω).

10

Page 11: Giovanni S. Alberti

C0,α regularity

TheoremIf ε, σ, µ ∈ C0,α and Je, Jm ∈ C0,α with α ∈ (0, 1

2 ], then E,H ∈ C0,αloc (Ω).

Proof.The Helmholtz decomposition E = ∇qE + curl ΦE , H = ∇qH + curl ΦH yields

−∆ΦE = iωµH + Jm − div (µ∇qH) = div(µ curl ΦH − iω−1Jm

)−∆ΦH = −iγE + Je − div (γ∇qE) = div (γ curl ΦE + iJe)

I H2 regularity: ΦE ,ΦH ∈ H2 ⊆W 1,6, so that curl ΦE , curl ΦH ∈ L6

I W 1,p regularity: ∇qE ,∇qH ∈ L6, so that E,H ∈ L6

I W 2,p regularity: ΦE ,ΦH ∈W 2,6, so that curl ΦE , curl ΦH ∈W 1,6 ⊆ C0, 12

I Schauder estimates: ∇qE ,∇qH ∈ C0,α, so that E,H ∈ C0,α

11

Page 12: Giovanni S. Alberti

Higher regularity

Higher regularity resultsfor elliptic equations =⇒ Higher regularity results

for Maxwell’s equations

TheoremIf ε, σ, µ ∈WN,3 and Je, Jm ∈ HN (div,Ω) then E,H ∈ HN

loc(Ω).

TheoremIf ε, σ, µ ∈ CN,α and Je, Jm ∈ CN,α with α ∈ (0, 1

2 ], then E,H ∈ C ,αloc(Ω).

12

Page 13: Giovanni S. Alberti

Outline

Interior regularity

Global regularity

What else?

13

Page 14: Giovanni S. Alberti

Elliptic boundary regularity

Key points:

1. Helmholtz decomposition of E and H :

E = ∇qE + curl ΦE , H = ∇qH + curl ΦH

2. Elliptic regularity applied to:

−∆ΦE = iωµH + Jm − div (µ∇qH) = div(µ curl ΦH − iω−1Jm

)−∆ΦH = −iγE + Je − div (γ∇qE) = div (γ curl ΦE + iJe)

So:I We can use boundary elliptic regularity!I Need boundary conditions for the potentials ΦE , ΦH , qE and qH :

ΦE · ν = 0, ΦH × ν = 0, qE = 0 on ∂Ω

14

Page 15: Giovanni S. Alberti

Boundary conditions for qE

I Elliptic PDE:−div (γ∇qE) = div (γ curl ΦE + iJe) in Ω

I The Helmholtz decomposition gives

qE = 0 on ∂Ω

I Dirichlet problem!

15

Page 16: Giovanni S. Alberti

Boundary conditions for qH

I Elliptic PDE:

−div (µ∇qH) = div(µ curl ΦH − iω−1Jm

)in Ω

I From

0 = div(E × ν) = curlE · ν = iωµH · ν + Jm · ν = iωµ∇qH · ν + iωµ curl ΦH · ν + Jm · ν

we obtain−µ∇qH · ν =

(µ curl ΦH − iω−1Jm

)· ν on ∂Ω

I Neumann problem!

16

Page 17: Giovanni S. Alberti

Boundary conditions for ΦE and ΦH

I 6 PDEs:−∆ΦE = iωµH + Jm, −∆ΦH = −iγE + Je in Ω.

I 3 Boundary conditions:

ΦE · ν = 0, ΦH × ν = 0, on ∂Ω

I What to do?

17

Page 18: Giovanni S. Alberti

The flat case

I Let’s focus on ΦH :

−∆ΦH = −iγE + Je in Ω, ΦH × ν = 0, on ∂Ω.

I Suppose Ω = x3 < 0, so that ν = e3. Thus:

ΦH × ν = 0 =⇒ (ΦH)1 = (ΦH)2 = 0

and

div ΦH = 0 =⇒ ∂1(ΦH)1+∂2(ΦH)2+∂3(ΦH)3 = 0 =⇒ ∂3(ΦH)3 = 0 =⇒ ∂ν(ΦH)3 = 0

I Dirichlet and Neumann problems!

18

Page 19: Giovanni S. Alberti

Flattening out the boundary

I Ω is locally defined byx3 < κ(x1, x2)

I Change of coordinates y = Φ(x):

y1 = x1, y2 = x2, y3 = x3 − κ(x1, x2)

19

Page 20: Giovanni S. Alberti

Piola transformation

I SettingE = (Φ′)−TE, γ = Φ′γ(Φ′)T ,

we have curlE = iωµH + Jm−div(γE) = div(iJe)E × ν = 0

∣∣∣∣∣

curl E = (iωµH + Jm)

− div(γE) = div(iJe)

E × e3 = 0

I Same equations!

20

Page 21: Giovanni S. Alberti

What regularity is needed?

I New PDEs

curl E = (iωµH + Jm) , −div(γE) = div(iJe), E × e3 = 0

with coefficientγ = Φ′γ(Φ′)T

I If ∂Ω is of class C1,1, then Φ′ ∈ C0,1 and– H1 regularity: γ ∈W 1,∞ =⇒ γ ∈W 1,∞

– C0,α regularity: γ ∈ C0,α =⇒ γ ∈ C0,α

I Higher regularity: ∂Ω of class CN,1I Non-smooth domains: many results (Buffa, Costabel, Dauge, Nicaise . . . )

21

Page 22: Giovanni S. Alberti

Outline

Interior regularity

Global regularity

What else?

22

Page 23: Giovanni S. Alberti

Other results

I Regularity only for E or H :

γ ∈ C0,α =⇒ E ∈ C0,α

I W 1,p regularity:µ, γ ∈W 1,p, p > 3 =⇒ E,H ∈W 1,p

I Meyers theorem:

no additional assumptions =⇒ E,H ∈ L2+δ

I Asymptotic expansions in the presence of small inhomogeneities

23

Page 24: Giovanni S. Alberti

Maxwell regularity=

Helmholtz decomposition + elliptic regularity

24