Gillespie2016 Developmental Modelsibg.colorado.edu/cdrom2016/gillespie/Development/... ·...

37
Developmental Models Lindon Eaves, Nathan Gillespie & Brad Verhulst Thu Mar 10, 2016 1:30pm – 3pm Mountain Time

Transcript of Gillespie2016 Developmental Modelsibg.colorado.edu/cdrom2016/gillespie/Development/... ·...

  • Developmental Models Lindon Eaves, Nathan Gillespie & Brad Verhulst Thu Mar 10, 2016 1:30pm – 3pm Mountain Time

  • Why run longitudinal models?

  • Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53q23 q33 q43

    1 1 1 1 1

    μiμi μs μq

    Why run longitudinal models? Map changes in the magnitude of genetic & environmental influence across time ID enduring versus time dependent genetic or environmental risks Improve power to detect A, C & E

    Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32 β541 1 1 1 1

    ψ1

    ia11

  • Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53q23 q33 q43

    1 1 1 1 1

    μiμi μs μq

    Various models for analysing longitudinal data 1. Cholesky Decomposition 2. Latent growth curve model 3. Auto-regression model 4. Dual Change Score model

    Models imply that you look at your variance-covariance matrix & have a theory about the nature of change

    Dep 1

    A1

    Dep 2

    A2

    Dep 3

    A3a11

    a22a33

    a21a31 a32

    Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32 β541 1 1 1 1

    ψ1

    ia11

    1

    2

    3

  • Atheoretical longitudinal model 1. Cholesky Decomposition Advantages - logical: organized such that all factors are constrained to impact

    later, but not earlier time points - requires few assumptions: can predict any pattern of change Disadvantages - atheoretical: no explicit hypothesis of change. Describes

    patterns of change without accounting for them in terms of one or more simpler and, potentially more informative theoretical possibilities

    Dep 1

    A1

    Dep 2

    A2

    Dep 3

    A3a11

    a22a33

    a21a31 a32

  • Theoretical longitudinal models After inspecting your observed variances-covariances in your repeated measures:

    1. UNFOLDING Individual genetic and/or environmental differences in inherent growth patterns with age - Latent growth curve effects

    2. ACCUMULATION of individual genetic and/or environmental

    differences, which are more of less persistent - Autoregressive effects

    3. Latent growth curve model + Auto-regression model (“Dual

    Change Score model:”)

    NB: INSPECT DATA

  • 1. Latent growth curve model AKA ‘‘random regression’’, ‘‘hierarchial mixed’ or ‘‘latent growth curve” models” What does the LGC model predict? 1. Variation in latent true scores at each time point is a function of where you begin, or what you begin with, in terms of individual genetic and environmental differences….

    Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    ϵ1 ϵ2 ϵ3

    ? ? ?

  • Time 1

    η1

    I

    Time 2

    η2

    Time 3

    η3

    ϵ1 ϵ2 ϵ3

    μiμi

    1 11

  • 2. Variation in latent true scores at each time point is also a function of UNFOLDING individual genetic and environmental differences, over time, Unfolding may involve linear and non-linear rates of change.

    Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    ϵ1 ϵ2 ϵ3

    μiμi μs μq

    1 110 1 2

    01 4

  • Latent growth modelling Developmental change = UNFOLDING of inherent, random genetic & environmental differences in the level & rates of change in behavior over time Model corresponds to special cases of the factor model in which factor loadings from the level (intercept) & change factors are functions of the coefficients of a priori contrasts on the levels of age at which the repeated measures were taken

    Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    ϵ1 ϵ2 ϵ3

    μiμi μs μq

    1 110 1 2

    01 4

  • Latent growth modelling Recap – common pathway

  • Latent growth modeling Recap – common pathway

  • Latent growth modelling Add another latent factor fix the factor loadings

  • Latent growth modelling

    Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53 Γ Gamma

    ϵ Epsilon

    q23 q33 q43

    1 1 1 1 1 Λ Lamba

    μiμi μs μq

  • 2. Auto-regression modelling AKA “simplex modelling” and “Sh%t-St%cks model” Example means

    Example covariation matrix correlation matrix Cross-temporal correlations within subjects arise because time specific sources of individual differences are more or less persistent time, and may, ACCUMULATE during development. Giving rise to a developmental increase in genetic and/or environmental variance, and increased correlations between adjacent measures

  • Trait

    η

    ϵ

    ?

  • Trait time1

    η1

    Trait time2

    η2

    ϵ1 ϵ2

  • Time 1

    η1

    Time 2

    η2

    ψ2

    ϵ1 ϵ2

  • Auto-regression models

    Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2ia22

    ψ3ia33

    ψ4ia44

    ψ5ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32 β54 Β BetaΨ Psi

    ϵ Epsilon

    1 1 1 1 1 Λ Lamba

    ψ1ia11

  • Enables partitioning of variation at each time point into: - Transient genetic & environmental risks unique to each occasion - Persistent, enduring genetic & environmental risk factors Examples? - Snow-ball - Vocabulary acquisition - Emotional baggage

    Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2ia22

    ψ3ia33

    ψ4ia44

    ψ5ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32 β54 Β BetaΨ Psi

    ϵ Epsilon

    1 1 1 1 1 Λ Lamba

    ψ1ia11

  • Auto-regressive model examples

  • Dual Change Score model Latent growth curve model + Auto-regression model

  • Dual Change Score model

    Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ψ2 ψ3 ψ4 ψ5

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

  • Dual Change Score model Lisrel model (Jöreskog & Sörbom, 1996) to estimate expect covariance:

    Λ x (I-Β)~ x (Γ x (ϕ) x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

    ϕ Phi

    Γ Gamma

    Β Beta

    Ψ Psi

    ϵ Epsilon

    Λ LambaTime

    1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53

    β54

    q23 q33 q43

    1 1 1 1 1

    rIS rSQ

    μiμiμs μq

    rIQ

  • ϕ Phi

    Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

    I S Q

    rIQ

    rIS rSQ

    I

    A1

    S

    A2

    Q

    A3

  • Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

    Γ Gamma

    η1

    I

    η2

    S

    η3

    Q

    η4 η5

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53q23 q33 q43

  • Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    Ψ Psi1 1 1 1

    Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

  • Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43β32 β54 Β Beta

    Ψ Psi1 1 1 1 1 Λ Lamba

    Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

  • Time 1

    η1

    Time 2

    η2

    Time 3

    η3

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43β32 β54 Β Beta

    Ψ Psi1 1 1 1 1 Λ Lamba

    Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

  • Time 1

    Time 2

    Time 3

    Time 4

    Time 5

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a ϵ Epsilon

    Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵ

  • Λ x (I-Β)~ x (Γ x ϕ x Γ' + Ψ) x (I-Β)~' x Λ' + ϵϕ Phi

    Γ Gamma

    Β Beta

    Ψ Psi

    ϵ Epsilon

    Λ LambaTime

    1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ψ2

    ia22ψ3

    ia33ψ4

    ia44ψ5

    ia55

    β21 β43

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    res_a res_a res_a res_a res_a

    β32

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53

    β54

    q23 q33 q43

    1 1 1 1 1

    rIQrIS rSQ

  • Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5β21 β43β32

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53

    β54

    q23 q33 q43

    1 1 1 1 1

    μi μs μq

    Γ Gamma

    Β BetaΛ Lamba

    (Λ x ( (I-Β)~ x Γ x μ ) )'

  • Pracatica Dual_change_score_model.R

  • Time 1

    η1

    I

    Time 2

    η2

    S

    Time 3

    η3

    Q

    Time 4

    η4

    Time 5

    η5

    ψ20.13

    ψ30.09

    ψ40.12

    ψ50.76

    0.77 0.77

    ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

    0.12 0.12 0.12 0.12 0.12

    0.77

    i11i21 i31 i41

    i51s12 s22 s32

    s52s42q13

    q53

    0.77

    q23 q33 q43

    1 1 1 1 1

    0.37

    0.78 0.59

    2.040.82 -0.20