From Trapped Atoms To Liberated Quarks(neutron matter, sQGP) viscosity of strongly correlated...

38
From Trapped Atoms To Liberated Quarks Thomas Schaefer North Carolina State University 1

Transcript of From Trapped Atoms To Liberated Quarks(neutron matter, sQGP) viscosity of strongly correlated...

  • From Trapped Atoms

    To Liberated Quarks

    Thomas Schaefer

    North Carolina State University

    1

  • BNL and RHIC

    2

  • Heavy Ion Collision

    Star TPC

    3

  • Elliptic Flow

    Hydrodynamic

    expansion converts

    coordinate space

    anisotropy

    to momentum space

    anisotropy

    b

    2A

    niso

    trop

    y P

    aram

    eter

    v

    (GeV/c)TTransverse Momentum p

    0 2 4 6

    0

    0.1

    0.2

    0.3

    -π++π 0SK-+K+Kpp+

    Λ+Λ

    STAR DataPHENIX DataHydro modelπKpΛ

    source: U. Heinz (2005)

    4

  • Elliptic Flow II

    0 5 10 15 20 25 30 350

    0.05

    0.1

    0.15

    0.2

    0.25

    /dy ch (1/S) dN

    ε/2 v HYDRO limits

    /A=11.8 GeV, E877labE

    /A=40 GeV, NA49labE

    /A=158 GeV, NA49labE

    =130 GeV, STAR NNs

    =200 GeV, STAR Prelim. NNs

    Requires “perfect” fluidity (η/s < 0.1 ?)

    (s)QGP saturates (conjectured) universal bound η/s = 1/(4π)?

    5

  • Designer Fluids

    Atomic gas with two spin states: “↑” and “↓”

    open

    closed

    V

    r

    Feshbach resonance a(B) = a0

    (

    1 +∆

    B −B0

    )

    “Unitarity” limit a→ ∞ σ =4π

    k2

    6

  • Elliptic Flow

    A)

    300

    200

    100

    σ x

    , σ z

    (µ m

    )

    2.01.51.00.50.0

    Expansion Time (ms)

    2.5

    2.0

    1.5

    1.0

    0.5

    Aspect R

    atio

    (

    σ x / σ z

    )

    2.01.51.00.50.0

    Expansion Time (ms)

    B)

    Hydrodynamic

    expansion converts

    coordinate space

    anisotropy

    to momentum space

    anisotropy

    7

  • Perfect Liquids

    sQGP (T=180 MeV)

    Trapped Atoms (T=1 neV)

    Neutron Matter (T=1 MeV)

    8

  • Universality

    What do these systems have in

    common?

    dilute: rρ1/3 ¿ 1strongly correlated: aρ1/3 À 1

    a

    r

    k −1F

    Feshbach Resonance in 6Li Neutron Matter

    9

  • Questions

    Equation of State

    Critical Temperature

    Transport: Shear Viscosity, ...

    Stressed Pairing

    10

  • I. Equation of State

    11

  • Universal Equation of State

    Consider limiting case (“Bertsch” problem)

    (kFa) → ∞ (kF r) → 0

    Universal equation of state

    E

    A= ξ

    (E

    A

    )

    0= ξ

    3

    5

    ( k2F2M

    )

    How to find ξ?

    Numerical Simulations

    Experiments with trapped fermions

    Analytic Approaches

    12

  • Effective Field Theory

    Effective field theory for pointlike, non-relativistic neutrons

    Leff = ψ†(

    i∂0 +∇22M

    )

    ψ− C02

    (ψ†ψ)2 +C216

    [

    (ψψ)†(ψ↔

    ∇2

    ψ)+h.c.]

    + . . .

    (a, r, . . .) ⇒ (C0, C2, . . .)

    Partition Function (Hubbard-Stratonovich field s, Fermion matrix Q)

    Z =

    Ds exp [−S′] , S′ = − log(det(Q)) + V (s)

    C0 < 0 (attractive): det(Q) ≥ 0

    13

  • Continuum Limit

    Fix coupling constant at finite lattice spacing

    M

    4πa=

    1

    C0+

    1

    2

    ~p

    1

    E~p

    Take lattice spacing b, bτ to zero

    µbτ → 0 n1/3b→ 0 n1/3a = const

    Physical density fixed, lattice filling → 0

    Consider universal (unitary) limit

    n1/3a→ ∞

    14

  • Lattice Results

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1 1.2

    E/A

    *(3/

    5 E

    F)-

    1

    T/TF

    0.07

    0.42

    0.14

    T = 4 MeVT = 3 MeVT = 2 MeV

    T = 1.5 MeVT = 1 MeV

    Canonical T = 0 calculation: ξ = 0.25(3) (D. Lee)

    Not extrapolated to zero lattice spacing

    15

  • Green Function Monte Carlo

    10 20 30 40N

    0

    10

    20E/

    E FG

    E = 0.44 N EFG

    Pairing gap (∆) = 0.9 EFG

    odd Neven N

    Other lattice results: ξ = 0.4 (Burovski et al., Bulgac et al.)

    Experiment: ξ = 0.27+0.12−0.09 [1], 0.51 ± 0.04 [2], 0.74 ± 0.07 [3][1] Bartenstein et al., [2] Kinast et al., [3] Gehm et al.

    16

  • Upper and lower critical dimension

    Zero energy bound state for arbitrary d

    ψ′′(r) +d− 1r

    ψ′(r) = 0 (r > r0)

    d=2: Arbitrarily weak attractive

    potential has a bound state

    ξ(d=2) = 1

    d=4: Bound state wave function

    ψ ∼ 1/rd−2. Pairs do not overlap

    ξ(d=4) = 0

    Conclude ξ(d=3) ∼ 1/2?

    Try expansion around d = 4 or d = 2?

    Nussinov & Nussinov (2004)

    17

  • Epsilon Expansion

    EFT version: Compute scattering amplitude (d = 4 − ²)

    '

    iDig ig

    T =1

    Γ(

    1 − d2

    )

    (m

    )−d/2 (

    −p0 +²p2

    )1−d/2

    ' 8π2²

    m2i

    p0 +²p2

    + iδ

    g2 ≡ 8π2²

    m2D(p0, p) =

    i

    p0 +²p2

    + iδ

    Weakly interacting bosons and fermions

    18

  • Epsilon Expansion

    Effective potential

    O(1) O(1) O(�)

    ξ =1

    2²3/2 +

    1

    16²5/2 ln ²

    − 0.0246 ²5/2 + . . .

    ξ(²=1) = 0.475

    Problem: Higher order corrections large (∼ 100 %)!

    Combine d = 4 − ² and d = 2 + ²̄ (and Pade)

    ξ = (0.3 − 0.35)

    19

  • Quark Gluon Plasma Equation of State (Lattice)

    0

    1

    2

    3

    4

    5

    6

    7

    1.0 1.5 2.0 2.5 3.0 3.5 4.0

    T/T0

    p/T4

    pSB/T4

    nf=(2+1),Nτ=4Nτ=6

    nf=2, Nτ=4Nτ=6

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    T/Tc

    ε/T4 εSB/T4

    p4, Nτ=4, nf=3 asqtad, Nτ=6, nf=2+1

    15%

    Compilation by F. Karsch (SciDAC)

    20

  • Holographic Duals at Finite Temperature

    Thermal (conformal) field theory ≡ AdS5 black hole

    CFT temperature ⇔ Hawking temperature ofblack hole

    CFT entropy ⇔ Hawking-Bekenstein entropy=area of event horizon

    s =π2

    2N2c T

    3 =3

    4s0

    Gubser and Klebanov

    s

    λ = g N2

    weak coupling

    strong coupling

    Extended to transport properties by Policastro, Son and Starinets

    η =π

    8N2c T

    3

    21

  • II. How Large Can Tc Get?

    22

  • Critical Temperature: From BCS to BEC

    TcTF

    BCS

    (k a) −1F

    BEC

    TBCSc =4 · 21/3eγe7/3π

    ²F exp

    (

    − π|kFa|

    )

    Tc(a→ ∞) = 0.28²F

    TBECc = 3.31

    (

    n2/3

    m

    )

    Tc = 0.21²F +O(aBn1/3)

    23

  • Experimental Results

    0.1 1T/TF

    0.01

    0.1

    1

    10

    E(t

    heat

    )/E

    0 -1

    0 0.2 0.8√1+β ~T

    0

    0.2

    0.8

    T/T

    F

    T /TF =0.27

    Tc

    Kinast et al. (2005)

    Lattice results: Tc/TF = 0.15 (UMass)

    24

  • Quark Matter: Color Superconductivity

    Weak coupling result

    TcTF

    =beγ

    πexp

    (

    − 3π2

    √2g

    )

    b = 512π4g−5(2/Nf )52 e−

    π2+4

    8

    = +

    =

    =

    Maximum Tc/TF = 0.025. Strong coupling?

    0.0 0.5 1.0 1.5 2.0 2.5nb [fm

    −3]

    0.00

    0.05

    0.10

    ∆ 0,T

    c [G

    eV]

    µc=0.5GeV

    µc=0.4GeV

    Find Tc/TF ' 0.2

    Note: Transition to χSB

    Consider Nc = 2 QCD?

    25

  • Importance of Tc/TF : Heavy Ion Collisions at Fair

    26

  • III. Transport Properties

    27

  • Collective Modes

    Radial breathing mode Kinast et al. (2005)

    2.00

    1.95

    1.90

    1.85

    1.80

    1.75

    Freq

    uenc

    y (ω

    /ω⊥)

    2 1 0 -1 -2

    1/kFa

    680 730 834 1114 B (Gauss)

    Ideal fluid hydrodynamics, equation of state P ∼ n5/3

    ∂n

    ∂t+ ~∇ · (n~v) = 0

    ∂~v

    ∂t+(

    ~v · ~∇)

    ~v = − 1mn

    ~∇ (P + nV )ω =

    10

    3ω⊥

    28

  • Damping of Collective Excitations

    50

    40

    30

    20

    8642

    4030

    2.52.01.51.00.50.0

    60

    50

    40

    (<x2

    >)(

    1/2)

    ( µm

    )

    5040

    2.52.01.51.00.50.0

    (c)

    (b) 5040

    2.52.01.51.00.50.0

    60

    50

    40

    (a)

    thold(ms)

    0.10

    0.05

    0.00

    Dam

    ping

    rate

    (1/τ

    ω⊥)

    1.41.21.00.80.60.40.20.0

    T~

    T/TF = (0.5, 0.33, 0.17) τω: decay time × trap frequency

    Kinast et al. (2005)

    29

  • Viscous Hydrodynamics

    Energy dissipated due to viscous effects is

    Ė = −η2

    d3x

    (

    ∂ivj + ∂jvi −2

    3δij∂kvk

    )2

    − ζ∫

    d3x (∂ivi)2,

    η, ζ: shear, bulk viscosity

    Shear viscosity to entropy ratio (ζ=0)

    η

    s∼ ci ×

    Γ

    ω⊥× µω⊥

    × NS

    ci determined by Hydro solution

    Bruun, Smith, Gelman et al.

    0.2 0.4 0.6 0.8 1

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    η/s

    T/TF

    Problems: Scaling with N ; T dependence below Tc

    30

  • IV. Stressed Pairing

    31

  • Polarized Fermions: From BEC to BCS

    Response of paired state

    to pair breaking stress

    (e.g. Zeeman field)

    Lext = δµψ†σ3ψ

    ?

    BEC limit: Tightly bound bosons, no polarization for δµ < ∆

    δµ > ∆: Mixture of Fermi and Bose liquid, no phase separation

    BCS limit: No homogeneous mixed phase

    δµ > δµc1: LOFF pairing ∆(x) = eiqx∆

    32

  • Inhomogeneous pairing

    Onset? Consider EFT for gapless fermions interacting with GB’s

    L = ψ†(

    i∂0 − ²(−i~∂) − (~∂ϕ) ·↔

    2m

    )

    ψ +f2t2ϕ̇2 − f

    2

    2(~∂ϕ)2

    Free energy of state with non-zero current vs = ∂ϕ/m

    F (vs) =1

    2nmv2s

    +

    d3p

    (2π)3²v(~p)Θ (−²v(~p))

    Unstable for BCS-type dispersion relation

    0.2 0.4 0.6 0.8 1

    -0.04

    -0.02

    0.02

    0.04Ω/C

    x

    h = −0.08

    h = −0.05

    x ∼ ∆

    h ∼ δµ− δµc∆

    33

  • Minimal Phase Diagram

    1 2

    1/a1/a*

    homogenoeous superfluid

    gaplesssuperfluid

    supercurrent

    LOFF

    1

    δµ

    ∆∆ ∆

    p

    (p)ε

    E

    E

    E

    E

    δµ

    gaplessBCS

    homog. BCS

    LOFF

    1

    2

    δµ

    ∆homog. superfluid

    supercurrentstate

    Son & Stephanov (2005)

    34

  • Experimental Situation

    Zwierlein et al.(MIT group)

    35

  • Color Superconductivity in QCD: Response to ms 6= 0QCD with three degenerate flavors: CFL pairing

    〈qai qbj〉 = (δai δbj − δaj δbi )φ

    〈ud〉 = 〈us〉 = 〈ds〉Pair breaking stress due to µs = m

    2s/(2pF ) 6= 0

    pF

    µs

    d

    u

    s

    e

    2δ p = m

    2pF

    sF

    p1

    p2

    kinematics + electric neutrality + weak equilibrium

    36

  • Phase Structure of CFL Quark Matter

    How does CFL (〈ud〉 = 〈ds〉 = 〈su〉) pairing responds to ms?

    20 40 60 80 100

    20

    40

    60

    80

    ��� ��� � �� �� � �

    � �� � �

    ��� ��� �� � �

    ��� ��� �� � �

    � �� ��� �� � ��

    �� �

    Excitation energy of fermions

    Gapless modes appear at

    µs(crit) ∼ 0.75∆

    20 40 60 80 100

    -20

    -15

    -10

    -5

    ��� � � �!" # $

    %&

    '( )

    '( )*

    +,- '( )*

    Energy density of superfluid phases

    µs(K − cond) ∼ m2/3u ∆4/3/µµs(GB − cur) ∼ 0.75∆

    Figures: Kryjevski & Schäfer (2004) Schäfer (2005)

    37

  • Trapped atoms provide interesting model system

    equation of state of strongly correlated systems

    (neutron matter, sQGP)

    viscosity of strongly correlated systems (sQGP?)

    superfluidity at strong coupling (Tc/TF , response to

    pair breaking fields, precursor phenomena)

    38