Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs...

22
Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 Gminimum Objec5ves: understand aerosol dispensers boiling condi5ons drug crystals and crystal transi5ons mixtures and chemical poten5al Phases and phase transi5ons of drug substances S mole =k B ln (N total_nof_states ) =R ln (n states_of_one_molecule ) ΔS= nR ln(n 1 /n 2 )

Transcript of Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs...

Page 1: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

FreeEnergyandStateEquilibria

Gibbs Free Energy (G)

G=H-TS G1 = G2 G→minimum

Objec5ves:•  understandaerosoldispensers•  boilingcondi5ons•  drugcrystalsandcrystaltransi5ons•  mixturesandchemicalpoten5al

Phasesandphasetransi5onsofdrugsubstances

Smole=kBln(Ntotal_nof_states)=Rln(nstates_of_one_molecule)ΔS= nR ln(n1/n2)

Page 2: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

PhaseEquilibria•  Tradingenthalpyforentropy•  Theentropiccontribu5on–TSgainsmagnitudewithtemperature.

•  Thetemperatureatwhich

G1=G2,thephasesareinequilibrium,e.g.

0=Δ−Δ

−=−

STHTSHTSH

trstrs

ggll

Clapeyron Equation

dPdT

=Sα − SβVα −Vβ

=ΔStrsΔVtrs

Page 3: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

EntropyandPhaseChanges

•  Considerasystemanditssurroundingsatnormaltransi2ontemperatureTtrs

•  Thesystemisinequilibrium⇒anyheattransferisreversible.

•  Entropychange:

Increase in entropy

Increase in entropy

Δ trsS =Δ trsHTtrs

trs1 trs2

Ttrs =ΔtrsHΔtrsS

Page 4: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

DispensingDrugsasAerosolsforAsthma,COPD,etc.

ThefirstaerosolspraycanpatentwasgrantedinOslo,Norwayin1926toErikRotheim

SalbutamolandBeclometasone:asthmaandallergicrhini5sIpratropiumbromide:COPDoracuteasthmaTolna6ate:forjockitch,athlete'sfootandringworm.Cromoglicicacid:nasalspray,non-steroid,leukotrieneRagonistNedocromil:alsoamastcellstabilizer

metered-doseinhalers

Propellants:FromChlorofluorocarbons(banned)toHydrofluoroalkanes(HFA)

Howdotheywork?HowdoestheoutsidetemperatureaffectitsfuncHon?

(nor)EpinephrineSalbutamolβ2adrenergicreceptoragonist

USAdultswithasthma:18.9million(8.2%)

Page 5: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

BoilingLiquidtoGas

•  Bubblescontainsolventingasstate,pressuregrowswithT

•  Whenvaporinbubblesreachesexternalpressure(atmospheric)solventboils.

•  Boilingpointislowerathighal5tudesorlowerpressure.

Pexternal = Pvapor (depends on T)

Page 6: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

WaterVaporPressure•  Isonly0.03atm@25degC.•  Reaches1atm@100degC.• 

Pb(Tb)Clausius-Clapeyron

ln P2P1

"

# $

%

& ' = −

ΔHvap

R1T2−1T1

"

# $

%

& '

ΔHvap = TΔSvap ≈ −TR ln(Pvap )ln(P) = −ΔHvap / RT

Page 7: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Trouton’srule,BoilingTemperature

•  Liquidssubstancesboilatverydifferenttemperatures

•  ΔH~TB

Δ vapS =Δ vapHTBoiling

≈ const

Benzene +30.8 80.1 +87.2 carbon tetrachloride +30. 0 76.7 +85.8 cyclohexane +30.1 80.7 +85.1 hydrogen sulphide +18.7 -60.4 +87.9 methane +8.18 -161.5 +73.2 water +40.7 100.0 +109.1

ΔvapH0BoilingpointoCΔvapS0[J/(molK)]

Trouton’sobserva5on:ΔvapS0iscloseforawiderangeofsubstancesandTvap.Thereforefromaboilingtemperaturewecanes5mateenthalpyloss:ΔvapH0

BoilingT

FrederickThomasTrouton,Physicist,1963-1922

0=Δ−Δ

−=−

STHTSHTSH

trstrs

ggll

Page 8: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Excep5onsfromTrouton’srule

•  Thevaporiza5onentropyranges–  from73J/(Kmol)(CH4)–  to109J/(Kmol)forwater–  normallyΔS=85-89J/(Kmol)or10.5R

•  Waterismoreorderedthanotherliquidsbecauseofthehydrogenbondingstructure

•  Methaneisunusuallyround

Waterismoreorderedthanotherliquids

Therela5veincreaseinanumberofstatespermoleculeingas:

ΔvapS ≈ 4.5R+ R lnT ≈10.5R

ΔvapS = R lnngnl

#

$%

&

'(

lna− lnb = ln(a / b)ln(ng / nl ) =10.5

ng / nl = e10.5 ≈ 36,500 ~ 30•1200

Page 9: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Halothanevapor

•  Halothanevapor(akaFluothane)isaninhala5onalgeneralanaesthe5c(mixedwithO2)

•  Itboilsat50C(s5llaboveroomtemperaturebutenoughforhighconcentra5on)

•  @20CP=244mmHg(~0.3atm)•  Q:ishalothaneagoodpropellant?

Page 10: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

DrugDelivery:Aerosols•  Gas is thevaporsofa liquidwithboiling

po int s l ight ly lower than roomtemperature. Thismeans that inside thepressurized can, the vapor can exist inequilibrium with its bulk liquid. As gasescapes it is immediately replaced bymore evapora5ng liquid. Since thepropellant exists in liquid form it isdesirable that it be miscible with ordissolvedinthedrug

•  Medicinalaerosolssuchasasthmainhalersusehydrofluoroalkanes(HFA),food:nitrousoxide(whippedcream).

BoilingT

Page 11: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

AerosolPropellants•  Heavypropellants:Deathof21oldArinRugefromaerosol(“Huffing”fromcompressedair)

•  Temperature-sensi5vity–  ToostrongathighT,stopsatlow

Propellants:FromChlorofluorocarbons(bannedduetoozonedepleHon)toHydrofluoroalkanes(HFA)

Tb=8.92°C-26.3°C

TetrafluoromethaneTb=-127.8°C

Page 12: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

PhaseTransi5onsinPureSubstances

•  Phaseboundaries–coexistencecurves(twophasescoexist)

•  Triplepoint–3phasescoexist

•  Beyondcri2calpoint,liquidandgasarefusedtoformsupercri2calfluid

•  Solid,Liquid,Gas•  Phases–notonlysolid/liquid/gas,butalsoallotropes,•  Usually,atgivenP,Tonlyonephaseofpuresubstanceis

thermodynamicallystable

water

Page 13: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

CrystalsandAllotropes

Graphite Diamond Theenthalpyandentropyofforma5onofallotropes

H,kcal/molS,cal/molK

Graphite0.001.36Diamond0.450.58But:Graphiteislighter

•  Whichformis“forever”?

Page 14: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Crystals

•  MostDrugsinthetabletformaremicrocrystals

•  Crystalsnaturallypurifythedrugfromthemixture

•  Manydrugsorcontrastagentsexcretedintheurinehavethepoten5altoformcrystals.Highconcentra5onanddifferentpHmaybefactors

Crystal-Methmethamphetamine

Page 15: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Purifica5onandslowdeliveryofinsulin

•  Oneofthemostimportanthumanproteintherapeu5cagentisinsulin.

•  Roleofcrystalsforproteins– 3Dstructuredetermina5on– Purifica5onmethod– Slowdelivery(dependsonacrystalform.3formswithdifferentrateofrelease) Insulincrystals

Thekine5csdependsonthesizethetypeofcrystals

Page 16: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

TypicalPhaseDiagrams:CarbonDioxide

•  Basicfacts,CO2:0.039%•  DryIce:Cooling(leavesnotrace)•  Blood:

–  70%to80%isconvertedtobicarbonateionsHCO−3bycarbonicanhydraseintheredbloodcells

–  CO2+H2O→H2CO3→H++HCO−3.

–  ~10%dissolvedintheplasma–  ~10%isboundtohemoglobin

•  Solid-liquidboundaryhasaposi2veslope,asformostsubstances

•  Thetriplepoint:P=5bar>1atm⇒–  liquidCO2doesnotexistat1atm⇒

“dryice”–  Phasetransi5on:sublima2on

Page 17: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

CarbonMonoxide

•  HemoglobincanexchangeO2andCO2•  CarbonMonoxidebindsTOOTIGHTLYtohemoglobin

17

Page 18: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

ImportantPhaseDiagrams:Water•  Waterismoredensethaniceat00C,

•  Tetrahedralarrangementinice

Page 19: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Deriva5on.Vaporpressuresatvarioustemperatures

•  Alongacoexistencecurve:Gα(T,P)=Gβ(T,P)

Gα(T+dT,P+dP)=Gβ(T+dT,P+dP)dGα=dGβ

Vα,⋅dP–Sα,⋅dT=Vβ⋅dP–Sβ⋅dT

•  whichrearrangesto:

Clapeyron Equation

dPdT

=Sα − SβVα −Vβ

=ΔStrsΔVtrs

Theexactslopeofphaseboundaryforanyphaseequilibriumofanypuresubstance!

Note:waterP373K=1atm

α

β

Fromthe1stLawanddefofG,q:dG=V⋅dP–S⋅dT

dGgas

dGliquid

Appendix.Deriva5on

Page 20: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

VaporPressurevsTemperatureAnalterna5veformofClausius-Clapeyroneq:where• T1andP1areacorrespondingabsolutetemperatureandvaporpressure,samefortheT2andP2pressure• ΔHvapisthemolarenthalpyofvaporiza5on

ln P2P1

"

# $

%

& ' = −

ΔHvap

R1T2−1T1

"

# $

%

& '

dPdT

=ΔStrsΔVtrs

=ΔHtrs

TΔVtrs≈ΔHtrs

TVgas=

ΔHtrs

T RTP

#

$%

&

'(

dPP=ΔHtrs

RT 2 ; ln(P) 21 = −ΔHtrs

R1T#

$%

&

'( 21

ln P2P1

#

$%

&

'(= −

ΔHvap

R1T2−1T1

#

$%

&

'(

dGgas

Deriva5on:TheGaslawfor1mole:

12

Appendix

Page 21: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

Mixtures,Equilibrium&ChemicalPoten5alµ

Singlecompartment•  TotalG->minumum

equlibrium

Twocompartments• Chemicalpoten5alµΑofeachcomponentisequalinbothcompartmentsinequilibrium

A(gas)

A(liquid)

•  SoluHons•  Suspensions•  Colloids(milk,

nanopar5cles,colloidalsilver,sulphur,gold)

Page 22: Free Energy and State Equilibriaruben.ucsd.edu/20/r06.pdf · Free Energy and State Equilibria Gibbs Free Energy (G) G=H-TS G 1 = G 2 G→minimum Objecves: • understand aerosol dispensers

ChemicalPotenHalµ•  G = H-TSisanextensivevariable•  ForapuresubstanceJthechemicalpoten5al is

defined asmolarGibbs energy: µJ≡Gm= G/n

•  ChemicalPoten7alis molarFreeEnergyof a par7cular chemical ingredient in amixture

•  Inamixtureofn1,n2,..,nJ

JinTpJJ n

G

⎟⎟⎠

⎞⎜⎜⎝

∂=

,,

µ