FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

13
FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix J. Typek 1 , N. Guskos 1,2 , A. Szymczyk 1 , D. Petridis 3 1 Institute of Physics, Szczecin University of Technology, Szczecin, Poland 2 Department of Physics, University of Athens, Greece 3 NCSR Demokritos, Aghia Paraskevi, Athens, Greece

description

FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix. J. Typek 1 , N. Guskos 1,2 , A. Szymczyk 1 , D. Petridis 3 1 Institute of Physics, Szczecin University of Technology, Szczecin, Poland 2 Department of Physics, University of Athens , Greece - PowerPoint PPT Presentation

Transcript of FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

Page 1: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR and DSC study of maghemite nanoparticles in

PMMA polymer matrix

J. Typek1 , N. Guskos1,2, A. Szymczyk1, D. Petridis3

1Institute of Physics, Szczecin University of Technology, Szczecin, Poland2Department of Physics, University of Athens, Greece

3NCSR Demokritos, Aghia Paraskevi, Athens, Greece

Page 2: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

Maghemite – γ-Fe2O3 (iron(III) oxide)

• inverse spinel cubic structure

• stoichiometric formula

(Fe3+)A O2- (Fe3+ Fe3+2/3[ ]1/3)B O2-

3

• 8 Fe3+ ions located in tetrahedral sites (A-sites) and 16 Fe3+ ions in octahedral sites (B-sites)

• collinear ferrimagnet

• antiparallel magnetic sublattices A (4.18 μB) and B (4.41 μB)

• TC=590-675ºC

Page 3: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

PMMA (polymethyl methacrylate)

• Polymethyl methacrylate (PMMA) or poly (methyl 2-methylpropenoate) is the synthetic polymer of methyl methacrylate. This thermoplastic and transparent plastic is sold by the tradenames Plexiglas, R-Cast, Perspex, Plazcryl, Limacryl, Acrylex, Acrylite, Acrylplast, Altuglas, Polycast and Lucite and is commonly called acrylic glass or simply acrylic. The material was developed in 1928 in various laboratories and was brought to market in 1933.

• Temperature of the glass transition Tg = 85-105ºC

• Melting temperatures 130-140ºC

Page 4: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

Synthesis of γ-Fe2O3 /PMMA nanocomposite

•Procedure: preparation of capped magnetic nanoparticles → exchange of the oleate units by methacrylate units → preparation of γ-Fe2O3/PMMA composite

•γ-Fe2O3 nanocrystalline particles with an average size of 10 nm, chemically bonded to the chains

•The surface bond oleate groups can be fully exchanged with metacrylate units by refluxing in ethanol. The exchange reaction ensures the chemical bonding of methacrylate units to the surface of nanoparticles, which in turn, undergo the polymerization with the vinyl groups of the methyl mathacrylate.

•Magnetic nanoparticles capped with oleic acid were prepared by one step method involving partial oxidation of Fe(II) in alkaline solutions by dilute H2O2. The reaction was conducted in the presence of oleic acid and under biphase conditions.

Incorporation of nanoparticles in the polymer matrix through chemical bonding

FMR investigated samples – 5 wt% and 10 wt% γ-Fe2O3

Page 5: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

DSC study of γ-Fe2O3/PMMA nanocomposite

Maghemite content wt%

Tg

[ºC]

Cp

[J/g ºC]

0 99.60 0.349

5 103.80 0.337

10 107.11 0.317

PMMA/5

103.80°C(H)0.3373J/(g·°C)98.19°C

109.55°C

PMMA/10107.11°C(H)0.3168J/(g·°C)101.44°C

112.76°C

-0.3

-0.2

-0.1

0.0

0.1

0.2

Hea

t Flo

w (

W/g

)

40 60 80 100 120 140 160

Temperature (°C)Exo Up Universal V4.1D TA Instruments

•Tg increases with maghemite content increase →reduced dynamics of polymer chains, hidering segmental motion• cp heat capacity decreases with maghemite content → increase of steric hindrance

Page 6: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectra – temperature dependence

5 wt%

High-temperature rangeLow-temperature rangeTblock ~ 40 K ?

T=150 K PMMA relaxation?

Page 7: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR parameters – integrated intensity

5 wt%

•FMR integrated intensity Iz ~ (FMR signal amplitude)·(ΔB)2

• Integrated intensity Iz ~ spin susceptibility χ’’

•Iz·T ~(magnetic moment)1/2

Page 8: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectra: γ-Fe2O3 content

10 wt% 5 wt%

The difference (in intensity) is observed for T>250 K. It could be attributed to the dipol-dipol magnetic interaction between nanoparticles.

Page 9: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectra - decompositionT=71 K, 5 wt%

Narrow (high-field) component → magnetic easy axis external magnetic field

Broad (low-field) component → magnetic easy axis || external magnetic field

Page 10: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectrum decomposition5 wt%

Page 11: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectrum decomposition

g-fa

ctor

Line

wid

th [

Gs]

Temperature [K] Temperature [K]

Narrow component

Broad component

Mag

netic

mom

ent

10 wt%

Page 12: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

FMR spectrum decompositionIn

tegr

ated

inte

nsity

[ar

b. u

nits

]

Temperature [K]

Narrow component

(high field)

Broad component

(low-field)

10 wt%

B0

B0

Page 13: FMR and DSC study of maghemite nanoparticles in PMMA polymer matrix

Conclusions

• Increase in maghemite content → Tglass decreases

• Blocking temperature ~40 K• Relaxation in PMMA=150 K• Maghemite content differences seen in FMR above 250 K• FMR spectrum reflects magnetic anisotropy of nanoparticles