Feynman’rules’ Interac/on’term’ ·...

27
Feynman rules J = J ( x ), φ = φ ( x ) Interac/on term

Transcript of Feynman’rules’ Interac/on’term’ ·...

Page 1: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Feynman  rules  

J = J (x),φ = φ(x)

Interac/on  term  

Page 2: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Feynman  rules  

Z(J ,λ)

Expansion  in  λ  :  

λJ 4

e.g.

J = J (x),φ = φ(x)

Page 3: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Connected  v/s  disconnected  diagrams    

e.g.

Sum  of  connected  diagrams    

Feynman  diagrams  –  a  convenient  way  to  represent  the  double  series  expansion      

Page 4: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Expansion  in  J  (Wick):   Z(J ,λ) = Z(0,0) 1

s!J sG (s)

s=0

∞∑

Green  func/ons  

e.g. 2-point function

for λ=0, G = iD(x1 − x2 )

Page 5: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

ScaHering  amplitudes  for  Scalar  Electrodynamics  

LSZ  for  scalars:    

LSZ  for  vectors:  

(Lehmann-­‐Symanzik-­‐Zimmerman)  

Page 6: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Feynman  rules  for  Scalar  Electrodynamics  

LSZ  formula  c.f.  scalar  case  ch  10  Srednicki  

Time  ordered  

2  incoming  2  outgoing  par/cles  

Page 7: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Feynman  rules  

× No  scaHering  

W (J ) is sum of all connected diagrams with no tadpoles and at least two sources

δ1δ2δ3δ4

δ1 removes a source and labelsthe propagator end-point x1

Page 8: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

ie k + k '( )µ −2ie2gµν −iλ

NB  Combinatoric  factors  

Feynman  rules  for  Scalar  Electrodynamics  

Page 9: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

ie k + k '( )µ −2ie2gµν −iλ

Feynman  rules  for  Scalar  Electrodynamics  

−igµν / k2 − iε( ) −i / k2 +m2 − iε( )

ελiµ*(k), ελi

µ (k) for incoming and outgoing photons respectively

Page 10: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Applica/on  of  the  Feynman  rules:      I.  Tree  level  

Page 11: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Compton  scaHering  of  a  π  meson  

k,µ k ',ν

p 'pp k+ p 'p'p k−

k,µ k ',ν k,µ k ',ν

p 'p

iM fi = (ie)2[ε .(2 p + k) −i( p + k)2 − m2 ε '.(2 p '+ k ')

+ ε .(2 p '− k) −i( p − k ')2 − m2 ε '.(2 p − k ')− 2iε .ε ']

dσ = 1

vA 2EA2EB

M2 1

(2π )2 δ4( pC + pD − pA − pB )

d 3 pC

2EC

d 3 pD

2ED

γπ γπ→

c. f . dσ = 14 k1 CM

sT

2dLIPSn ' (k1 + k2 ) Srednicki (11.22)

⎝⎜⎜

⎠⎟⎟

= −ie2ε 'µ T µνεν

Page 12: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Cross section = Transition rate x Number of final states

Initial flux

42 4

32 32

64

1 (2 ) ( )2 (22 ) 2 2C D A B

A B C D

C Dd p p p pE E

dE E

pVV

p d Vπ δπ

σ = + − −Av

M

dσ =

M2

FdQ

3 34 4

3 3(2 ) ( )(2 ) 2 (2 ) 2

C DC D A B

C D

d p d pdQ p p p pE E

π δπ π

= + − −Lorentz Invariant Phase space

2 2 2 1/ 2

2 2

4(( . ) )A B

A B A B

F E E

p p m m

=

= −Av

The cross section

Page 13: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Sum  over  final  polarisa/ons  and  average  over  ini/al  polarisa/ons  

εµ

*

pol∑ (k)εν (k)→−gµν c.f.  Peskin  &  Schroeder  P159  

Page 14: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

k µ (2 p + k)µ ( p + p '+ k)λ

( p + k)2 − m2 +(2 p '− k)µ ( p + p '− k)λ

( p + k)2 − m2 − 2gµλ

⎝⎜⎞

⎠⎟

(2 p + k).k = ( p + k)2 − m2 − ( p2 − m2 ) (2 p '− k).k = −( p '− k)2 + m2 + p '2− m2( )

p + p '+ k( )λ − p + p '− k( )λ = 2kλ

0 0}  

⇒ 0 QED

Ward  Iden/ty   k µΓµ ...(k,...) = 0

Page 15: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Sum  over  final  polarisa/ons  and  average  over  ini/al  polarisa/ons  

εµ

*

pol∑ (k)εν (k)→−gµν c.f.  Peskin  &  Schroeder  P159  

12 Pol∑ M

2

Page 16: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

p.k = mω , p.k ' = mω '

(using k '.k =ωω '(1− cosθ ))

12 Pol∑ M

2

Lab  Frame:  

'

12 Pol∑ M

2

Page 17: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

+ +

+...

Ward  Iden/ty   k µΓµ ...(k,...) = 0

Page 18: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

δSδφa (x)

= ∂L(x)∂φa (x)

− ∂µ

∂L∂(∂µφa (x))

Formal  proof:   = 0 along classical path

Noether  current  

= 0 0 =

δSδφa (x)

δφa (x) = −∂µ jµ (x)

Page 19: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Under a symmetry φ(x)→φ(x)+δφ(x) that leaves L invariant

Take n-functional derivatives w.r.t. Ja j

(x j )

δSδφa (x)

δφa (x) = −∂µ jµ (x)

Ward    Takahashi  iden/ty    

Page 20: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Contact  terms  vanish  in  scaHering  amplitude    

LSZ  formula  

0 in scattering amplitude

i.e. k µΓµ ...(k,...) = 0

Page 21: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2
Page 22: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Fundamental experimental objects

1 1 2( ... )na b b bΓ → Decay width = 1/lifetime

1 2 1 2( ... )na a b b bσ → Cross section

Cross section = Transition rate x Number of final states

Initial flux

3

31 (2 )Vd pn

i π=Π

a1v 1V V×

1a 1av

# particles passing through unit area in unit time

# target particles per unit volume

2a

(Lab frame)

Page 23: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

The transition rate 4 * ( ) ( ) ( ) ...fi f iT d x x V x xφ φ= − +∫

φi, f → f p

± = e(− ,+ )ip.x 1

2 p0V≡ N

Ve(− ,+ )ip.x

A

B

C

D

Transition rate per unit volume 2

fiTfi TVW =

24 4(2 ) ( )A B C DN N N N

fi C D A BVT p p p pπ δ= − + − − fiM

e.g.

φ f ,i = e(− ,+ )ip.x

(2π )4δ 4(kin − kout )⎡⎣ ⎤⎦

2= (2π )4δ 4(kin − kout )× (2π )4δ 4(0)

(2π )4δ 4(0) = d 4x ei0.x =VT∫

Page 24: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

The transition rate 4 * ( ) ( ) ( ) ...fi f iT d x x V x xφ φ= − +∫

φi, f → f p

± = e(− ,+ )ip.x 1

2 p0V≡ N

Ve(− ,+ )ip.x

A

B

C

D

Transition rate per unit volume 2

fiTfi TVW =

24 4(2 ) ( )A B C DN N N N

fi C D A BVT p p p pπ δ= − + − − fiM

e.g.

φ f ,i = e(− ,+ )ip.x

244

4

( ) 1 1 1 1(2 )2 2 2 2

C D A Bfi

A B C D

p p p pW

V E E E Eδ

π+ − − ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

M

Page 25: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

Cross section = Transition rate x Number of final states

Initial flux

42 4

32 32

64

1 (2 ) ( )2 (22 ) 2 2C D A B

A B C D

C Dd p p p pE E

dE E

pVV

p d Vπ δπ

σ = + − −Av

M

2

d dQF

σ =M

3 34 4

3 3(2 ) ( )(2 ) 2 (2 ) 2

C DC D A B

C D

d p d pdQ p p p pE E

π δπ π

= + − −Lorentz Invariant Phase space

2 2 2 1/ 2

2 2

4(( . ) )A B

A B A B

F E E

p p m m

=

= −Av

The cross section

Page 26: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2

The decay rate

212 A

d dQE

Γ = M

1

1

1

334 4

3 3(2 ) ( ... ) ...(2 ) 2 (2 ) 2

n

n

n

BBA B B

B B

d pd pdQ p p p

E Eπ δ

π π= − −

Page 27: Feynman’rules’ Interac/on’term’ · Feynman’diagrams’–aconvenientway’to’representthe’double’series’expansion’’’ ... Transition rate per unit volume 2