Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel,...

5
P09-163 Equations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p =ct: influente p ratio , T[3], η C , η T... Sa se determine influenta raportului de comprimare, a temperaturii maxime a ciclului si a randamentelor turbinei si compresorului asupra lucrului mecanic specific net si a randamentului unui ciclu Brayton simplu cu aer. La intrarea in compresor aerul are 100 kPa si 300 K. Se considera ptr aer calduri specifice constante egale cu cele de la temperatura ambianta. $UnitSystem kPa K procedure ConstP ropResult(T 1 ,P 1 ,r comp ,T 3 : η th,ConstP rop th,easy ) (1) For Air: c v =0.718 [kJ/kg · K] (2) k =1.4 (3) T 2= T 1 · r k-1 comp (4) P 2= P 1 · r k comp (5) q in,23 = c v · (T 3 - T 2) (6) T 4= T 3 · (1/r comp ) k-1 (7) q out,41 = c v · (T 4 - T 1 ) (8) η th,ConstP rop = (1 - q out,41 /q in,23 ) ·|100 %| [%] (9) The Easy Way to calculate the constant property Otto cycle efficiency is: η th,easy = 1 - 1 r k-1 comp ! ·|100 %| [%] (10) end (11) Marimi de intrare - Input Data: T 1 = 300 [K] (12) 1

Transcript of Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel,...

Page 1: Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p=ct:

P09-163

Equations

Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549

Ciclul Brayton pentru turbina cu gaze, cp=ct: influente pratio, T[3], ηC , ηT...

Sa se determine influenta raportului de comprimare, a temperaturii maxime a ciclului si a randamentelor turbineisi compresorului asupra lucrului mecanic specific net si a randamentului unui ciclu Brayton simplu cu aer. Laintrarea in compresor aerul are 100 kPa si 300 K. Se considera ptr aer calduri specifice constante egale cu celede la temperatura ambianta.

$UnitSystem kPa K

procedure ConstPropResult(T1, P1, rcomp, T3 : ηth,ConstProp, ηth,easy) (1)

For Air:

cv = 0.718 [kJ/kg ·K] (2)

k = 1.4 (3)

T2 = T1 · rk−1comp (4)

P2 = P1 · rkcomp (5)

qin,23 = cv · (T3 − T2) (6)

T4 = T3 · (1/rcomp)k−1 (7)

qout,41 = cv · (T4− T1) (8)

ηth,ConstProp = (1− qout,41/qin,23) · |100 %| [%] (9)

The Easy Way to calculate the constant property Otto cycle efficiency is:

ηth,easy =

(1− 1

rk−1comp

)· |100 %| [%] (10)

end (11)

Marimi de intrare - Input Data:

T1 = 300 [K] (12)

1

Page 2: Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p=ct:

P1 = 100 [kPa] (13)

rcomp = 12 (14)

T3 = 1000 [K] (15)

Rezolvare:

R = 0.287 [kJ/kg ·K] (16)

Process 1-2 is isentropic compression

s1 = s (air, T = T1, P = P1) (17)

P1 · v1 = R · T1 (18)

s2 = s1 (19)

V2 =V1rcomp

(20)

T2 = T (air, s = s2, P = P2) (21)

P2 ·v2T2

= P1 ·v1T1

(22)

Conservation of energy for process 1 to 2

q12 − w12 = ∆u12 (23)

q12 = 0 isentropic process (24)

∆u12 = u (air, T = T2)− u (air, T = T1) (25)

Process 2-3 is constant volume heat addition

v3 = v2 (26)

s3 = s (air, T = T3, P = P3) (27)

P3 · v3 = R · T3 (28)

Conservation of energy for process 2 to 3

q23 − w23 = ∆u23 (29)

w23 = 0 constant volume process (30)

∆u23 = u (air, T = T3)− u (air, T = T2) (31)

2

Page 3: Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p=ct:

Process 3-4 is isentropic expansion

s4 = s3 (32)

s4 = s (air, T = T4, P = P4) (33)

P4 · v4 = R · T4 (34)

Conservation of energy for process 3 to 4

q34 − w34 = ∆u34 (35)

q34 = 0 isentropic process (36)

∆u34 = u (air, T = T4)− u (air, T = T3) (37)

Process 4-1 is constant volume heat rejection

V4 = V1 (38)

Conservation of energy for process 4 to 1

q41 − w41 = ∆u41 (39)

w41 = 0 constant volume process (40)

∆u41 = u (air, T = T1)− u (air, T = T4) (41)

qin,total = q23 (42)

qout,total = −q41 (43)

wnet = w12 + w23 + w34 + w41 (44)

ηth = wnet/qin,total · |100 %| Thermal efficiency, in percent (45)

call ConstPropResult(T1, P1, rcomp, T3 : ηth,ConstProp, ηth,easy) (46)

PerCentError =ABS (ηth − ηth,ConstProp)

ηth· |100 %| [%] (47)

Data$ = Date$ (48)

SolutionVariables in Main program

Data$ = ‘2014-02-06’ ∆u12 = 361.8 [kJ/kg] ∆u23 = 183.1 [kJ/kg] ∆u34 = −473.2 [kJ/kg]∆u41 = −71.79 [kJ/kg] ηth = 60.8 [%] ηth,ConstProp = 62.99 [%] ηth,easy = 62.99 [%]PerCentError = 3.605 [%] q12 = 0 [kJ/kg] q23 = 183.1 [kJ/kg] q34 = 0 [kJ/kg]q41 = −71.79 [kJ/kg] qin,total = 183.1 [kJ/kg] qout,total = 71.79 [kJ/kg] R = 0.287 [kJ/kg-K]rcomp = 12 w12 = −361.8 [kJ/kg] w23 = 0 [kJ/kg] w34 = 473.2 [kJ/kg]w41 = 0 [kJ/kg] wnet = 111.3 [kJ/kg]

3

Page 4: Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p=ct:

Variables in Procedure ConstPropResultT [1] = 300 [K] P [1] = 100 [kPa] rcomp = 12 T [3] = 1000 [K]ηth,ConstProp = 62.99 [%] ηth,easy = 62.99 [%] cv = 0.718 [kJ/kg-K] k = 1.4T2 = 810.6 [K] P2 = 3242 [kPa] qin,23 = 136 [kJ/kg] T4 = 370.1 [K]qout,41 = 50.34 [kJ/kg]

Arrays

Row Pi Ti si vi[kPa] [K] [kJ/kg-K] [m3/kg]

1 100 300 5.705 0.8612 3119 779.7 5.705 0.071753 4000 1000 5.912 0.071754 133.2 399.5 5.912 0.861

Percenterror

4

Page 5: Equations - tmt.ugal.ro fileEquations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 549 Ciclul Brayton pentru turbina cu gaze, c p=ct:

T[3]

5