Electromagnetic Engineering MAPTele 2008-2009

68
Faculdade de Engenharia Inês Carvalho Assistant Professor Faculdade de Engenharia, Universidade do Porto www.fe.up.pt/~mines/ [email protected] Electromagnetic Engineering MAPTele 2008-2009 Electromagnetic waves Propagation Incidence Waveguides Transmission lines Radiation Program

Transcript of Electromagnetic Engineering MAPTele 2008-2009

Faculdade de Engenharia

Inês Carvalho

Assistant ProfessorFaculdade de Engenharia, Universidade do Porto

www.fe.up.pt/~mines/[email protected]

Electromagnetic EngineeringMAPTele 2008-2009

Electromagnetic waves

Propagation

Incidence

Waveguides

Transmission lines

Radiation

Program

EE 0809Incidence 2

Faculdade de EngenhariaEE – Propagation

Studying material

• any good book on electromagnetism:

“Microwave Engineering”, David Pozar, Addison-Wesley

http://paginas.fe.up.pt/~mines/EE/

• transparencies of lectures

• problems on incidence, waveguides and transmission lines

“Field and Wave Electromagnetics”, David K. Cheng, Addison-Wesley

EE 0809Incidence 3

Faculdade de EngenhariaEE – forthcoming lectures

Waveguides

Transmission Lines

à next week

Plane wave incidence à today

à 6/2 and 13/2

Electromagnetic Waves

Radiation

EE 0809Incidence 4

Faculdade de EngenhariaPlane wave incidence

Contents

normal incidence

reflection and transmission coefficients

stationary wave

interface with perfect conductor

multiple interfaces

oblique incidence

perpendicular and parallel polarizations

reflection and transmission coefficients

interface with perfect conductor

total internal reflection

EE 0809Incidence 5

Faculdade de EngenhariaMaxell’s equations in lossless media

tHE

∂∂−=×∇

rrµ

0=⋅∇ Er

tEH

∂∂=×∇

rrε

0=⋅∇ Hr

à electric field

à magnetic field

à dielectric permitivitty

à magnetic permeabilityµε

H

Er

r

( )0εεε r=

( )0µµµ r=m/s103

1 8

00

×== cεµ

2

22

tH

H∂

∂=∇

rrµε

2

22

tE

E∂∂

=∇rr

µεwave equations

in lossless media

EE 0809Incidence 6

Faculdade de EngenhariaPlane electromagnetic waves – temporal expressions

Plane wave in lossless media

linearly polarized along x

propagating along +z

( )xkztEE ˆcos0 −= ωr

εµω=k is the wavenumber

Note: they are solutions of wave

equations in lossless media

ω is the angular frequency

0E is the amplitude

( )tωcos

t

( )kzcos

z

fT /1= λ ( )kzt −ωcos

z

direction of propagation

εµ1=fv is the phase velocity

=

λπ2k

( )fπω 2=

EE 0809Incidence 7

Faculdade de EngenhariaHelmholtz’s equations

( ) ( )φω += tXtx cos0

022 =+∇ EkErr

022 =+∇ HkHrr

Helmholtz’s equations

( )µεω=k

2

22

tH

H∂

∂=∇

rrµε

2

22

tE

E∂∂

=∇rr

µε

wave equations

phasor notation:

( ) ( ) φω += tjeXtx 0Re

φjeXX 0=

tjXe ωRe=

phasor is

Note:

important

( ) ( )θθθ sincos je j +=

( )dt

tdxphasor of Xjωis

EE 0809Incidence 8

Faculdade de EngenhariaPlane electromagnetic waves – in phasor notation

Plane waves in lossless media

erajk peEE n ˆˆ

0

rr ⋅−=

εµω=khrajk peHH n ˆˆ

0

rr ⋅−=

na

is the wavenumber

and indicate the polarization directionep hp

wave propagating along the direction

Note: the polarization direction of the electromagnetic wave is defined by

the polarization direction of the electric field

EE 0809Incidence 9

Faculdade de EngenhariaPlane electromagnetic waves – phasors

Electric and magnetic fields are perpendicular to

each other and to the direction of propagation

transverse electromagnetic (TEM) wave

( )EaH n

rr×= ˆ1

η Ω=εµ

η

( )HaE n

rr×−= ˆη

Note:

is the intrinsic impedance of the medium

EE 0809Incidence 10

Faculdade de Engenharia

( )EaH n

rr×= ˆ1

η

Plane electromagnetic waves – phasors

( )HaE n

rr×−= ˆη

example 1

erajk peEE n ˆˆ

0

rr⋅−=

hrajk peHH n ˆˆ

0

rr⋅−=

Write the electric and magnetic field phasors of a 3 GHz TEM wave propagating along the +z

direction in free space. The wave is linearly polarized along the x direction and the electric field

amplitude is 10 V/m

V/m100 =E

zan ˆˆ +=

xpe ˆˆ =

zzyyxxr ˆˆˆ ++=r

V/mˆ10 20 xeE zj π−=r

rad/m20200 ππεµω ===

cfk Ω=== π

εµ

ηη 1200

00

( ) A/mˆ12

1ˆ1 20 yeEaH zjn

π

πη−=×=

rr

EE 0809Incidence 11

Faculdade de Engenharia

( )EaH n

rr×= ˆ1

η

Plane electromagnetic waves – phasors

( )HaE n

rr×−= ˆη

example 2

erajk peEE n ˆˆ

0

rr⋅−=

hrajk peHH n ˆˆ

0

rr⋅−=

The electric field phasor of a TEM wave propagating in a nonmagnetic medium with dielectric

constant 4 is given by

Find the frequency of the wave and obtain the magnetic field phasor.

)43(4ˆ zyrak n +=⋅ πr

zzyyxxr ˆˆˆ ++=r

V/mˆ2 )43(4 xeE zyj +−= πr

)ˆ4ˆ3(4ˆ zyak n += π1ˆ =na

122 m20434 −=+= ππk

zyzy

an ˆ8.0ˆ6.020

)ˆ4ˆ3(4ˆ +=+

π

y

z

º1.53

EE 0809Incidence 12

Faculdade de Engenharia

( )EaH n

rr×= ˆ1

η

Plane electromagnetic waves – phasors

( )HaE n

rr×−= ˆη

example 2

erajk peEE n ˆˆ

0

rr⋅−=

hrajk peHH n ˆˆ

0

rr⋅−=

The electric field phasor of a TEM wave propagating in a nonmagnetic medium with dielectric

constant 4 is given by

Find the frequency of the wave and obtain the magnetic field phasor.

nc

fk rrπεµεµωεµω 2=== 00

Ω=== πεµ

εµ

εµ

η 600

0

r

rA/m)ˆ6.0ˆ8.0(

301 )43(4 zyeH zyj −= +− π

π

r

V/mˆ2 )43(4 xeE zyj +−= πr

1m20 −= πk

zyan ˆ8.0ˆ6.0ˆ +=

1,4 == rr µε

GHz5.1=f

EE 0809Incidence 13

Faculdade de EngenhariaIncidence of a TEM wave at a plane boundary

medium 1

( )111 ,, σµε

z

x

medium 2

( )222 ,, σµε

tθrθ

plane of incidence à xz plane

angle of incidence à iθ

plane containing the normal to the boundary surface and the vectorindicating the direction of propagationof the incident wave

nta

transmitted

zxa iini ˆcosˆsinˆ θθ +=

zxa ttnt ˆcosˆsinˆ θθ +=

zxa rrnr ˆcosˆsinˆ θθ −=

directions of propagation:

nia

incident

nrareflected

EE 0809Incidence 14

Faculdade de EngenhariaSnell’s laws – law of reflection

medium 1( )111 ,, σµε

z

x

medium 2( )222 ,, σµε

nia

nra

nta

tθrθ

wavefrontà region with constant phase

O

/O

B

/A

A

naplane waves à wavefronts are perpendicular to

ri OOOO θθ sinsin // =

/1

/1 OAkAOk =

points and have the same phase O A/O /A

phase= dist.⋅k

ri θθ =

points and have the same phase

fvk

ωµεω ==

EE 0809Incidence 15

Faculdade de EngenhariaSnell’s laws – law of refraction

medium 1( )111 ,, σµε

z

x

medium 2( )222 ,, σµε

nia

nra

nta

tθrθ

O

/O

B

/A

A phase= dist.⋅k

ti OOkOOk θθ sinsin /2

/1 =

2

1

sinsin

kk

i

t =θθ

1

2

f

f

v

v=

naplane waves à wavefronts are perpendicular to

O A

B/O

OBkAOk 2/

1 =

fvk

ωµεω ==

points and have the same phase

points and have the same phase

EE 0809Incidence 16

Faculdade de EngenhariaIndex of refraction

Index of refraction à ratio of the speed of light in freespace to that in the medium

fvc

n =

2

1

sinsin

nn

i

t =θθ

ß Snell’s law of refraction

Ex: lossless mediaεµ

1=fv 00 εµ

εµ=n

rr εµ=

1≥n

large n à low speed

1

2

sinsin

f

f

i

t

vv

=θθ

EE 0809Incidence 17

Faculdade de EngenhariaBoundary conditions

medium 1( )111 ,, σµε

na

medium 2( )222 ,, σµε

let be the normal to the interfacepointing from medium 2 to medium 1

na( ) 0ˆ 21 =−× EEan

rr

( ) Sn JHHarrr

=−× 21ˆ

( ) Sn DDa ρ=−⋅ 21ˆrr

( ) 0ˆ 21 =−⋅ BBan

rr

tan,2tan,1 EE =

norm,2norm,1 BB =

continuosnormB

continuostanE

0ifcontinuostan =SJHr

0ifcontinuosnorm =SD ρNote:

0and0 ≠≠ SSJ ρr

only in ideal conductors

EE 0809Incidence 18

Faculdade de EngenhariaBoundary conditions – ideal conductors

00

00

condcond

condcond

==

==

BD

HErr

rr

Ideal conductors à

0e0 ≠≠ SSJ ρr

σµπδ

f1

=

∞=σ

0=

Example

∞=2σ

( )21ˆ HHaJ nS

rrr−×=

( )21ˆ DDanS

rr−⋅=ρ

1ˆ Han

r×= taH ˆtan,1=

1ˆ Dan

r⋅= naD ˆnorm,1=

medium 1( )111 ,, σµε

nu

medium 2( )222 ,, σµε

skin depth

EE 0809Incidence 19

Faculdade de EngenhariaNormal incidence

normal incidence à 0=iθ

2

1

sinsin

nn

i

t =θθ

ri θθ =0== tr θθ

medium 1

z

xmedium 2

nra

yiE

r

iHr

nta

tEr

tHr

nia

rEr

rHr

incident à xeEE zjkii ˆ10

−=r

yeE

H zjkii ˆ1

1

0 −=η

r

reflected à xeEE zjkrr ˆ10

+=r

yeE

H zjkrr ˆ1

1

0 +−=η

r

transmitted à xeEE zjktt ˆ20

−=r

yeE

H zjktr ˆ2

2

0 −=η

r

( )xeEeE zjkr

zjki ˆ11

00+− +=

yeE

eE zjkrzjki ˆ11

1

0

1

0

−= +−

ηη

ri EEErrr

+=1

ri HHHrrr

+=1

medium 1

medium 2

EE 0809Incidence 20

Faculdade de EngenhariaNormal incidence – reflection and transmission coefficients

boundary conditions à

medium 1

z

x

medium 2

yiEr

nta

tEr

tHr

iHr

nia

nra

rEr

rHr

continuoustanE

continuoustanH ( )0if =SJr

1Er ( )xeEeE zjk

rzjk

i ˆ1100

+− +=

1Hr

yeEeE zjkrzjki ˆ11

1

0

1

0

−= +−

ηη

medium 1

medium 2

xeEE zjkt ˆ202

−=r

yeE

H zjkt ˆ2

2

02

−=η

r

2

0

1

0

1

0

000

ηηηtri

tri

EEEEEE

=−

=+

at z=0 à21

21

HH

EErr

rr

=

=

12

2

0

0

12

12

0

0

2ηη

ηηηηη

+=

+−

=

i

t

i

r

EEEE

EE 0809Incidence 21

Faculdade de EngenhariaNormal incidence – reflection and transmission coefficients

medium 1

z

x

medium 2

nra

yiEr

iHr

nta

tEr

tHr

nia

rEr

rHr

( )xeEeEE zjki

zjki ˆ11

001+− Γ+=

r

1Hr

medium 1

medium 2

12

12

0

0

ηηηη

+−=

i

r

EE

12

12

ηηηη

+−

12

22ηη

ητ

+=

12

2

0

0 2ηη

η+

=i

t

EE

transmission coefficient

reflection coefficient

τ=Γ+1

Note

1.

2. 1≤Γ

3. 0≥τ

4.

xeEE zjki ˆ202

−=τr

( )xeEeE zjkr

zjki ˆ11

00+− +=

yeEeE zjkrzjki ˆ11

1

0

1

0

−= +−

ηη

xeEE zjkt ˆ202

−=r

yeE

H zjkt ˆ2

2

02

−=η

r

1Er

EE 0809Incidence 22

Faculdade de EngenhariaNormal incidence – stationary wave

medium 1

z

x

medium 2

nra

yiEr

iHr

nta

tEr

tHr

nia

rEr

rHr

( )xeEeEE zjki

zjki ˆ11

001+− Γ+=

r

ηηηη

+−

=Γ2

12

ηηη

τ+

=2

22

( )[ ]xeeEE zjkzjki ˆ1101

+− Γ+Γ−= τr

τ=Γ+1

( )xeeExeEE zjkzjki

zjki ˆˆ 111

001−+− −Γ+=τ

r

( )2

sinjxx eej

x−−

=

( )xzkEjxeEE izjk

i ˆsin2ˆ 10011 Γ+= −τ

r

propagating wave stationary wave

z

EE 0809Incidence 23

Faculdade de EngenhariaNormal incidence – maxima and minima

medium 1

z

x

medium 2

nra

yiEr

iHr

nta

tEr

tHr

nia

rEr

rHr

( )xeEeEE zjki

zjki ˆ11

001+− Γ+=

r

ηηηη

+−

=Γ2

12

ηηη

τ+

=2

22

( )[ ] ( )( )21

2101 2sin2cos1 zkzkEE i +Γ++Γ+= ΓΓ θθ

r

( )xzkEjxeEE izjk

i ˆsin2ˆ 10011 Γ+= −τ

r

maxima:

( )xeeE zkjzjki ˆ1 11 20

+− Γ+=

( )zkEi 12

0 2cos21 +Γ+Γ+= Γθ

ΓΓ=Γ θje

minima:( ) 12cos 1 +=+Γ zkθ ( ) 12cos 1 −=+Γ zkθ

( )πθ nk

zMAX 221

1

+−= Γ( )[ ]πθ 12

21

1min ++−= Γ n

kz

( )Γ+= 101 iMAXEE

r ( )Γ−= 10min1 iEEr

EE 0809Incidence 24

Faculdade de EngenhariaNormal incidence – incidence on ideal conductor

medium 1

z

x

medium 2

nra

yiEr

iHr

nta

tEr

tHr

nia

rEr

rHr

( )xeEeEE zjki

zjki ˆ11

001+− Γ+=

r

ηηηη

+−

=Γ2

12

ηηη

τ+

=2

22

if medium 1 is lossless

maxima:

minima:

( )π1221

1

+= nk

zMAX

1min k

nz

π=

01 2 iMAXEE =

r

0min1 =E

r

if medium 2 is ideal conductor

( )01 =σ

ωεσ

εµ

ηj−

=1

02 =η( )∞=2σ0

1=

−=Γτ

02 =Er

( )xeeEE zjkzjki ˆ1101

+− −=r

( )xzkjEi ˆsin2 10−=no propagating wave, only stationary wave

and

and

EE 0809Incidence 25

Faculdade de Engenharia

∫ ⋅=A

adSPrr

avav

average power carried by the wave across surface A:

Average power carried by electromagnetic wave

*av Re

21

HESrrr

×=

ndaad ˆ=r

à average Poynting’s vector

à perpendicular to surface A and with infinitesimal absolute value

A

adr

EE 0809Incidence 26

Faculdade de Engenharia

TEM waves

average Poynting’s vector points along the propagation direction

naHE ˆ⊥⊥rr

naES ˆ1Re21

*

2

av

rr

EaH n

rr×= ˆ1

η

( )∗××=× EaEHE n

rrrrˆ1

**

η( ) ( ) nn aEEaEE ˆˆ1 **

* ⋅−⋅=rrrr

η naE ˆ1 2

*

r

η=

( ) ( ) ( )BACBCACBArrrrrrrrr

⋅−⋅=××

Average Poynting’s vector for TEM waves

*av Re

21

HESrrr

×=

EE 0809Incidence 27

Faculdade de Engenharia

TEM waves in lossless media

naHE ˆ⊥⊥rr

naES ˆ1Re21

*

2

med

rr

EaH n

rr×= ˆ1

η

Average power for TEM waves in lossless media

η is real

erajk peEE n ˆˆ

0

rr⋅−=

( )220

av W/mˆ2 naESη

=r

∫ ⋅=A

adSPrr

avav

nadaad ˆ=rLet A be the surface

perpendicular to the propagating direction

( )W2

2

av AE

P o

η=( )Wav ASP av

r=

avSr

is constant

EE 0809Incidence 28

Faculdade de EngenhariaAverage incident, reflected and transmitted power

∫ ⋅=A

adSPrr

avav AEo

η2

2

=ASav

r=

medium 1

z

x

medium 2

nra

yiEr

iHr

nta

tEr

tHr

nia

rEr

rHr

ηηηη

+−

=Γ2

12

ηηη

τ+

=2

22

00 ir EE Γ= 00 it EE τ=

AE

P io

1

2

iav, 2η=

AE

P ro

1

2

rav, 2η=

AE

P to

2

2

tav, 2η=

2

iav,

rav, Γ=P

P

2

iav,

tav, τ≠P

Pimportant

2

iav,

tav, 1 Γ−=P

Ptav,rav,iav, PPP +=

EE 0809Incidence 29

Faculdade de EngenhariaNormal incidence – multiple interfaces

medium 1

z

xmedium 2

y

medium 3

0=z dz =

M M M

xeEE zjki ˆ1

0−=

r

interface 1 à 2 :12

1212 ηη

ηη+−

=Γ12

212

2ηη

ητ

+=

interface 2 à 1 :21

2121 ηη

ηη+−

=Γ21

121

2ηη

ητ

+=

12Γ−=

interface 2 à 3 :23

2323 ηη

ηη+−

=Γ32

323

2ηη

ητ

+=

all waves are linearly polarized along x

and

and

and

1. media 1 and 3 à infinite

reflection and transmission coefficients:

2.

note

EE 0809Incidence 30

Faculdade de EngenhariaNormal incidence – multiple inerfaces

z0=z dz =

zjkeE 10

medium 1 medium 2 medium 3

zjkdkj eeE 1220122321

+−Γ ττ

( )0E

( )012EΓ

( )012Eτ zjkeE 2012

−τ ( )djkeE 2012

−τ( )dzjkdjk eeE −−− 32

01223ττ

( )dzjkdjk eeE −+−Γ 2201223τ( )dkjeE 22

01223−Γ τ

zjkeE 1012

zjkdkj eeE 2220122321

−−ΓΓ τ ( )dzjkdkj eeE −−−ΓΓ 323012232123 ττ

( )dzjkdkj eeE −+−ΓΓ 223012

22321 τ

zjkdkj eeE 124012

2232121

+−ΓΓ ττ

zjkdkj eeE 224012

223

221

−−ΓΓ τ ( )dzjkdkj eeE −−−ΓΓ 325012

223

22123 ττ

( )dzjkdkj eeE −+−ΓΓ 225012

323

221 τ

M M M

EE 0809Incidence 31

Faculdade de EngenhariaNormal incidence – multiple interfaces

medium 1

z

medium 2 medium 3

0=z dz =

M M M

medium 1

z

medium 2 medium 3

0=z dz =

zjkeE 11

−+

zjkeE 11

+−

zjkeE 22

−+

zjkeE 22

+−

zjkeE 33

−+

01 EE =+

L+ΓΓ+ΓΓ+Γ+Γ= −−−− dkjdkjdkj eEeEeEEE 222 6012

323

22121

4012

2232121

201223210121 ττττττ

( )L+ΓΓ+ΓΓ+Γ+Γ= −−− dkjdkjdkj eeeEE 222 4223

221

22321

20231221012 1ττ

( )∑+∞

=

−− ΓΓΓ+Γ=0

22321

20231221012

22

n

ndkjdkj eeEE ττ02

2312

22312

2

2

1E

ee

dkj

dkj

ΓΓ+Γ+Γ

=022321

2231221

122

2

1E

ee

dkj

dkj

ΓΓ−Γ

+Γ= −

−ττ

EE 0809Incidence 32

Faculdade de EngenhariaNormal incidence – multiple interfaces

medium 1

z

medium 2 medium 3

0=z dz =

M M M

medium 1

z

medium 2 medium 3

0=z dz =

zjkeE 11

−+

zjkeE 11

+−

zjkeE 22

−+

zjkeE 22

+−

zjkeE 33

−+

L+ΓΓ+ΓΓ+ΓΓ+= −−−−+ djkdkjdjkdkjdjkdkjdjkdjk eeEeeEeeEeeEE 32323232 7012

323

32123

5012

223

22123

3012232123012233 ττττττττ

( ) ( )L+ΓΓ+ΓΓ+ΓΓ+= −−−− dkjdkjdkjdkkj eeeeE 22223 6323

321

4223

221

2232101223 1ττ

( ) ( )∑∞

=

−− ΓΓ=0

2232101223

223

n

ndkjdkkj eeEττ( )

022312

12232

23

1E

ee

dkj

dkkj

ΓΓ+=

ττ

EE 0809Incidence 33

Faculdade de EngenhariaNormal incidence at multiple interfaces – alternative approach

medium 1

z

xmedium 2

y

medium 3

0=z dz =

M M M

medium 1

z

xmedium 2

y

medium 3

0=z dz =

( )ye

Ee

EH

xeEeEE

zjkzjk

zjkzjk

ˆ

ˆ

11

11

1

1

1

11

111

−=

+=−

−+

−−+

ηη

r

rmedium 1

zjkeE 11

−+

zjkeE 11

+−

zjkeE 22

−+

zjkeE 22

+−

zjkeE 33

−+

( )ye

Ee

EH

xeEeEE

zjkzjk

zjkzjk

ˆ

ˆ

22

22

2

2

2

22

222

−=

+=−

−+

−−+

ηη

r

rmedium 2

yeE

H

xeEE

zjk

zjk

ˆ

ˆ

3

3

3

33

33

−+

−+

=

=

η

r

rmedium 3

EE 0809Incidence 34

Faculdade de EngenhariaMultiple interfaces – boundary conditions

medium1

z

x

medium 2

y

medium 3

0=z dz =

dielectric media à 0=SJr

continuoustanE

continuoustanH

0=z

2

22

1

11

2211

ηη

−+−+

−+−+

−=−

+=+

EEEE

EEEE

dz =

3

3

2

22

322

322

322

ηη

djkdjkdjk

djkdjkdjk

eEeEeE

eEeEeE

−+−−+

−+−−+

=−

=+

4 equations4 unknowns ( )+−+−

3221 ,,, EEEE

assuming 01 EE =+

EE 0809Incidence 35

Faculdade de EngenhariaMultiple interfaces – boundary conditions

medium 1

z

x

medium 2

y

medium 3

0=z dz =

2

22

1

11

2211

ηη

−+−+

−+−+

−=−

+=+

EEEE

EEEE

3

3

2

22

322

322

322

ηη

djkdjkdjk

djkdjkdjk

eEeEeE

eEeEeE−+−−+

−+−−+

=−

=+

01 EE =+

022312

22312

12

2

1E

ee

E dkj

dkj

−−

ΓΓ+Γ+Γ

=

( )

022312

12233

2

23

1E

ee

E dkj

dkkj

−+

ΓΓ+=

ττ

previous expressions, as expected

EE 0809Incidence 36

Faculdade de EngenhariaMultiple interfaces – examples

medium 1

z

x

medium 2

y

medium 3

0=z dz =

Elimination of reflections at interface 1à 3 by inserting medium 2

Examples

•Eliminations of reflexes in lenses

•Attenuation of radar echoes (invisible airplanes)

•…

à medium 2 is a matching device

EE 0809Incidence 37

Faculdade de EngenhariaMultiple interfaces – λ /4 transformer

medium 1

z

x

medium 2

y

medium 3

0=z dz =

022312

22312

12

2

1E

ee

E dkj

dkj

−−

ΓΓ+Γ+Γ

=

( )

022312

12233

2

23

1E

ee

E dkj

dkkj

−+

ΓΓ+=

ττ

eliminate reflections à 01 =−E 122

232 Γ−=Γ − dkje

( ) ( )( ) ( ) 0111 222 222

2312

231 =−−+−+− −−− dkjdkjdkj eee ηηηηηη

λ /4 transformer :

122 −=− dkje integerodd,2 2 mmdk π=

312 ηηη =

integer odd,4

2 mmdλ

=

wavelength in medium 2

EE 0809Incidence 38

Faculdade de Engenharia

pp f

v2,2 =λ

δδ2

2

cos1cosF

F+

=

λ /4 transformer – different wavelength

medium 1

z

x

medium 2

y

medium 3

0=z dz =

022312

22312

12

2

1E

ee

E dkj

dkj

−−

ΓΓ+Γ+Γ

=

( )

022312

12233

2

23

1E

ee

E dkj

dkkj

−+

ΓΓ+=

ττpf

vd

42=

velocity in medium 2

12

1212 ηη

ηη+−

=Γ13

13

ηη

ηη

+

−=312 ηηη =

23

2323 ηη

ηη+−

=Γ13

13

ηη

ηη

+

−=

Γ=Γ=Γ 2312

pf à design frequency

frequency f ( )dkj

dkj

ee

EE

2

2

22

2

0

1

11

−−

Γ++Γ

=

where

*2 zzz =

( )( )( )dk

dk

E

E

PP

224

22

20

2

1

inc

ref

2cos212cos12

Γ+Γ++Γ

==−

2

212

Γ−Γ

=F

dk2=δpf

f2π

=

EE 0809Incidence 39

Faculdade de Engenharia

δδ2

2

inc

ref

cos1cosF

FPP

+=

λ /4 transformer – different wavelength

medium 1

z

x

medium 2

y

medium 3

0=z dz =

where2

212

Γ−Γ

=Fpff

δ =and

0=Γ 0=F

1→Γ ∞→F

0=f 0=δ

∞→f ∞→δ

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inc

ref

PP

100=F

10=F

1=F

1.0=F

δ2π

23π

25π

EE 0809Incidence 40

Faculdade de EngenhariaProblem

formulae

Note: 0conductor =η

EE 0809Incidence 41

Faculdade de EngenhariaProblem

A plane electromagnetic wave with the following electric field phasor propagates in air and is incident normally on an interface at with a nonmagnetic medium with refractive index that occupies the region . Find

( )V/mˆ10 4 xeE zji

π−=r

22 =n0>z

a) the reflection and transmission coefficients;b) the electric field phasors of the reflected and transmitted waves;c) the average Poynting vectors of the incident, reflected and transmitted waves;d) the fraction of incident power that is transmitted to medium 2.

formulae

0=z

EE 0809Incidence 42

Faculdade de EngenhariaProblem

formulae

δδ2

2

inc

ref

cos1cosF

FPP

+=

2

212

Γ−Γ

=Fpff

δ =312 ηηη =

EE 0809Incidence 43

Faculdade de EngenhariaOblique incidence of a TEM wave at a plane boundary

TEM waveà naHE ˆ⊥⊥rr

ii HErr

and are in plane na⊥

medium 1( )111 ,, σµε

z

x

medium 2( )222 ,, σµε

tθrθ ntatransmitted

nia

incident

nra

reflected

2. parallel to plane of incidence

iEr

iEr

yeEE rajkii

ni ˆˆ0

1rr

⋅−=

( )zxeEE iirajk

iini ˆsinˆcosˆ

01 θθ −= ⋅−

rr

perpendicular polarization

parallel polarization

( ) yeEzxeEE rajkiii

rajkii

nini ˆˆsinˆcos ˆ2,0

ˆ1,0

11rrr

⋅−⋅− +−= θθ

perpendicular polarizationparallel polarization

1. normal to plane of incidence

General case:

EE 0809Incidence 44

Faculdade de EngenhariaPerpendicular and parallel polarizations – convention

perpendicular polarization

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

parallel polarization

Components of parallelto the interface keep their direction

tri EEErrr

e,

EE 0809Incidence 45

Faculdade de EngenhariaPerpendicular polarization – electric and magnetic fields

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

incident

zxa iini ˆcosˆsinˆ θθ +=

yeEE rajkii

ni ˆˆ0

1rr ⋅−=

inii EaHrr

×= ˆ1

1η ( )xzeE

iirajki ni ˆcosˆsinˆ

1

0 1 θθη

−= ⋅−r

reflected

zxa rrnr ˆcosˆsinˆ θθ −=

yeEE rajkrr

nr ˆˆ0

1rr ⋅−=

rnrr EaHrr

×= ˆ1

1η( )xze

Eii

rajkr nr ˆcosˆsinˆ

1

0 1 θθη

+= ⋅−r

zx ii ˆcosˆsin θθ −=

transmitted

zxa ttnt ˆcosˆsinˆ θθ +=

yeEE rajktt

nt ˆˆ0

2rr ⋅−=

tntt EaHrr

×= ˆ1

2η( )xze

Ett

rajkt nt ˆcosˆsinˆ

2

0 2 θθη

−= ⋅−r

relationships between

obtained from boundary conditions000 and, tri EEE

EE 0809Incidence 46

Faculdade de EngenhariaPerpendicular polarization – electric and magnetic fields

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

boundary conditions àcontinuoustanE

continuoustanH ( )0if =SJr

at 0=z tri EEErrr

=+

txrxix HHH =+

xjkt

xjkr

xjki

tii eEeEeE θθθ sin0

sin0

sin0

211 −−− =+

2

sin0

1

sin0

sin0

211 coscoscosη

θη

θθ θθθ xjktt

xjkir

xjkii

tii eEeEeE −−−

−=+−

ti kk θθ sinsin 21 =

000 tri EEE =+

( ) tt

iriE

EE θη

θη

coscos1

2

000

1

=−

EE 0809Incidence 47

Faculdade de EngenhariaPerpendicular polarization – reflection and transmission coefficients

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

000 tri EEE =+

( ) tt

iriE

EE θη

θη

coscos1

2

000

1

=−

ti

ti

i

r

EE

θηθηθηθη

coscoscoscos

12

12

0

0

+−

=

ti

i

i

t

EE

θηθηθηcoscos

cos2

12

2

0

0

+=

ti

ti

θηθηθηθη

coscoscoscos

12

12

+−

=Γ⊥

ti

i

θηθηθη

τcoscos

cos2

12

2

+=⊥

reflection coefficient

transmission coefficient

EE 0809Incidence 48

Faculdade de EngenhariaPerpendicular polarization – reflection and transmission coefficients

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

ti

ti

θηθηθηθη

coscoscoscos

12

12

+−

=Γ⊥

ti

i

θηθηθη

τcoscos

cos2

12

2

+=⊥

reflection coefficient

transmission coefficient

note

1. ⊥⊥ =Γ+ τ1 (as in normal incidence)

2. it is possible that 0=Γ⊥ ti θηθη coscos 12 =

⊥= Bi θθ(Brewster’s angle)

ti nn θθ sinsin 21 =

( )221

12212

11

sinµµ

εµεµθ

−−

=⊥B

3. if medium 2 is ideal conductor, 02 =η0

1

=

−=Γ

τ

21 µµ ≠only when

EE 0809Incidence 49

Faculdade de EngenhariaElectric field in medium 1 – perpendicular polarization

ri EEErrr

+=1

⊥⊥ =Γ+ τ1

( )[ ] yeeeEE xjkzjkzjki

iii ˆsincoscos01

111 θθθτ −⊥

−⊥⊥ Γ+Γ−=

r

wave propagating along

wave propagating along x,

with z dependent amplitude

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

yeEyeE rajkr

rajki

nrni ˆˆ ˆ0

ˆ0

11rr ⋅−⋅− +=

zxra

zxra

iinr

iini

θθ

θθ

cossinˆcossinˆ

−=⋅

+=⋅rr

( ) yeeeEyeE xjkzjkzjki

rajki

iiini ˆˆ sincoscos0

ˆ0

1111 θθθτ −−⊥

⋅−⊥ −Γ+=

r

( ) yezkEjyeE xjkii

rajki

ini ˆcossin2ˆ sin10

ˆ0

11 θθτ −⊥

⋅−⊥ Γ+=

r

nia

EE 0809Incidence 50

Faculdade de EngenhariaMaxima and minima in medium 1 – perpendicular polarization

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

yeEyeEE rajkr

rajki

nrni ˆˆ ˆ0

ˆ01

11rrr

⋅−⋅− +=

zxra

zxra

iinr

iini

θθ

θθ

cossinˆcossinˆ

−=⋅

+=⋅rr

( )( )yeeEE zkjzkxkji

iii ˆ1 cos2cossin01

111 θθθ +⊥

+− Γ+=r

( )[ ] ( )[ ]212

101 cos2sincos2cos1 zkzkEE iii θθθθ +Γ++Γ+= Γ⊥Γ⊥

r

( )zkE ii θθ cos2cos21 12

0 +Γ+Γ+= Γ⊥⊥

maxima: minima:

( )πθθ

nk

zi

MAX 2cos21

1

+−= Γ( )[ ]πθ

θ12

cos21

1min ++−= Γ n

kz

i

( )⊥Γ+= 101 iMAX

EEr ( )⊥Γ−= 10

min1 iEE

r

Γ⊥⊥ Γ=Γ θje

EE 0809Incidence 51

Faculdade de EngenhariaIncidence on ideal conductor – perpendicular polarization

medium 1

z

x

ideal conductor

iEr

iHr

nia

nra

y

rEr rH

r

( )yeeeEE zjkzjkxjki

iii ˆcoscossin01

111 θθθ −= −−r

maxima: minima:( )

iMAX k

nz

θπ

cos212

1

+=

ikn

πcos1

min =

01 2 iMAX

EE =r

0min

1 =Er

02 =η0

1=

−=Γ

τ

02 =Er

( )yzkeEj ixjk

ii ˆcossin2 1

sin0

1 θθ−−=

If medium 2 is ideal conductor

wave propagating along x,

with z dependent amplitude

EE 0809Incidence 52

Faculdade de EngenhariaParallel polarization – electric and magnetic fields

incident

zxa iini ˆcosˆsinˆ θθ +=

( )zxeEE iirajk

iini ˆsinˆcosˆ

01 θθ −= ⋅− rr

yeE

H rajkii

ni ˆˆ

1

0 1rr

⋅−=η

reflected

zxa rrnr ˆcosˆsinˆ θθ −=

yeE

H rajkrr

nr ˆˆ

1

0 1rr

⋅−−=η

zx ii ˆcosˆsin θθ −=

transmitted

zxa ttnt ˆcosˆsinˆ θθ +=

( )zxeEE ttrajk

ttnt ˆsinˆcosˆ

02 θθ −= ⋅− rr

yeE

H rajktt

nt ˆˆ

2

0 2rr

⋅−=η

relationships between

obtained from boundary conditions000 and, tri EEE

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

( )zxeEE iirajk

rrnr ˆsinˆcosˆ

01 θθ += ⋅− rr

EE 0809Incidence 53

Faculdade de EngenhariaParallel polarization – electric and magnetic fields

meio 1

z

x

meio 2

tθrθ

iEr

iHr

nia

nra

y

rEr rH

r

nta

tEr

tHr

boundary conditions àcontinuoustanE

continuoustanH ( )0if =SJr

at 0=z txrxix EEE =+

tri HHHrrr

=+

xjktt

xjkir

xjkii

tii eEeEeE θθθ θθθ sin0

sin0

sin0

211 coscoscos −−− =+

2

sin0

1

sin0

sin0

211

ηη

θθθ xjkt

xjkr

xjki

tii eEeEeE −−−

=−

ti kk θθ sinsin 21 =

( ) ttiri EEE θθ coscos 000 =+

( )2

000

1

1ηη

tri

EEE =−

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

EE 0809Incidence 54

Faculdade de EngenhariaParallel polarization – reflection and transmission coefficients

it

it

i

r

EE

θηθηθηθη

coscoscoscos

12

12

0

0

+−

=

it

i

i

t

EE

θηθηθηcoscos

cos2

12

2

0

0

+=

reflection coefficient

transmission coefficient

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

( ) ttiri EEE θθ coscos 000 =+

( )2

000

1

1ηη

tri

EEE =−

it

it

θηθηθηθη

coscoscoscos

12

12| | +

−=Γ

it

i

θηθηθη

τcoscos

cos2

12

2| | +

=

EE 0809Incidence 55

Faculdade de EngenhariaParallel polarization – reflection and transmission coefficients

note

1.

=Γ+

i

t

θθ

τcoscos

1 | || |

2. it is possible that 0| | =Γ it θηθη coscos 12 =

||Bi θθ =(Brewster’s angle)

ti nn θθ sinsin 21 =

( )221

2112| |

2

11

sinεε

εµεµθ

−−

=B

3. If medium 2 is ideal conductor, 02 =η0

1

| |

| |

=

−=Γ

τ

21 µµ =when

reflection coefficient

transmission coefficient

it

it

θηθηθηθη

coscoscoscos

12

12| | +

−=Γ

it

i

θηθηθη

τcoscos

cos2

12

2| | +

=

( )21| |

11

sinεε

θ+

=B

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

EE 0809Incidence 56

Faculdade de EngenhariaElectric field in medium 1 – parallel polarization

ri EEErrr

+=1

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

( ) ( )zxeEzxeE iirajk

riirajk

inrni ˆsinˆcosˆsinˆcos ˆ

011 θθθθ ++−= ⋅−⋅−

rr

=Γ+

i

t

θθ

τcoscos

1 ||||

( )

( ) ( )zxeEzxeE

zxeE

iirajk

iiirajk

i

iirajk

ii

t

nrni

ni

ˆsinˆcosˆsinˆcos

ˆsinˆcoscoscos

ˆ0| |

ˆ0| |

ˆ0| |

11

1

θθθθ

θθθθ

τ

+Γ+−Γ−

−=

⋅−⋅−

⋅−

rr

r

( )

( )( ) zeeeE

xeeeE

zxeEE

izjkzjkxjk

i

izjkzjkxjk

i

iirajk

ii

t

iii

iii

ni

ˆsin

ˆcos

ˆsinˆcoscoscos

coscossin0| |

coscossin0| |

ˆ0| |1

111

111

1

θ

θ

θθθθ

τ

θθθ

θθθ

+Γ+

−Γ+

−=

⋅−rr

( )

( )( ) zzkeE

xzkeEj

zxeE

iixjk

i

iixjk

i

iirajk

ii

t

i

i

ni

ˆsincoscos2

ˆcoscossin2

ˆsinˆcoscoscos

1sin

0| |

1sin

0| |

ˆ0| |

1

1

1

θθ

θθ

θθθθ

τ

θ

θ

⋅−

Γ+

Γ+

−=r

EE 0809Incidence 57

Faculdade de EngenhariaElectric field in medium 1 – parallel polarization

waves propagating along x,

with z dependent amplitudes

wave propagatingalong nia

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

( )zxeEE iirajk

ii

t ni ˆsinˆcoscoscos ˆ

0| |11 θθ

θθ

τ −= ⋅−rr

( ) xzkeEj iixjk

ii ˆcoscossin2 1

sin0| |

1 θθθ−Γ+

( ) zzkeE iixjk

ii ˆsincoscos2 1

sin0||

1 θθθ−Γ+

EE 0809Incidence 58

Faculdade de EngenhariaMaxima and minima in medium 1 – parallel polarization

( )( ) iraajkrajk

ixnrnini eeEE θcos1 ˆˆ

||ˆ

0111

rr⋅−⋅− Γ+=

( )[ ] ( )[ ]21| |

21| |01 cos2sincos2cos1cos zkzkEE iiiix θθθθθ +Γ++Γ+= ΓΓ

( )zkE iii θθθ cos2cos21cos 1| |2

| |0 +Γ+Γ+= Γ

maxima: minima:

( )πθθ

nk

zi

MAX 2cos21

1

+−= Γ ( )[ ]πθθ

12cos21

1min ++−= Γ n

kz

i

( )| |01 1cos Γ+= iiMAXEE θ ( )| |0min1 1cos Γ−= iix EE θ

ΓΓ=Γ θje||||

medium 1

z

x

medium 2

tθrθ

iEr

iHr

nia

nra

y

rEr

rHr

nta

tEr

tHr

ri EEErrr

+=1 ( ) ( )zxeEzxeE iirajk

riirajk

inrni ˆsinˆcosˆsinˆcos ˆ

011 θθθθ ++−= ⋅−⋅−

rr

( ) ( ) zeEeExeEeE irajk

rrajk

iirajk

rraj

inrn inrn i ˆsinˆcos ˆ

01111 θθβ

rrrr⋅−⋅−⋅−⋅− +−++=

( ) izkjrajk

ixini eeEE θθ cos1 cos2

||ˆ

0111 Γ+= ⋅−

r

EE 0809Incidence 59

Faculdade de Engenharia

ideal conductor

Incidence on ideal conductor – parallel polarization

maxima of E1x:

( )i

MAX kn

zθπ

cos212

1

+=

ikn

πcos1

min =

iiMAXx EE θcos2 01 = 0min1 =xE

02 =η0

1

||

||

=

−=Γ

τ

02 =Er

if medium 2 is ideal conductor

waves propagating along x,

with z dependent amplitudes medium 1

z

x

iEr

iHr

nia

nra

y

rEr

rHr

( ) ( )[ ]zeexeeEE irajkrajk

irajkrajk

inrninrni ˆsinˆcos ˆˆˆˆ

011111 θθ

rrrrr⋅−⋅−⋅−⋅− +−−=

( )( ) zzkeE

xzkeEj

iixjk

i

iixjk

i

i

i

ˆsincoscos2

ˆcoscossin2

1sin

0

1sin

0

1

1

θθ

θθθ

θ

−=

minima of E1x:

EE 0809Incidence 60

Faculdade de Engenharia

idealconductor

Metallic waveguides

medium 1

z

x

y

perpendicular polarization:ik

nz

θπ

cos1

=01 =Er

( )yzkeEjE ixjk

ii ˆcossin2: 1

sin01

1 θθ−−=⊥r

( )( ) zzkeE

xzkeEjE

iixjk

i

iixjk

i

i

i

ˆsincoscos2

ˆcoscossin2:||

1sin

0

1sin

01

1

1

θθ

θθθ

θ

−=r

at

parallel polarization:ik

nz

θπ

cos1

=01 =xE at

for both polarizations, a conducting plane parallel

to the xy plane could be inserted at

without modifying electric field in medium 1ik

nz

θπ

cos1

= ikn

πcos1

=

EE 0809Incidence 61

Faculdade de Engenharia

idealconductor

Metallic waveguides

medium 1

z

x

y

i

nz

θβπ

cos1

=

electromagnetic wave is guided

by the two conducting surfaces

metallic waveguide

could it be possible to guide an electromagnetic

wave with only dielectric media?

EE 0809Incidence 62

Faculdade de EngenhariaDielectric waveguides

dielectric 1

general case:

in each incidence part of the wave is transmitted to dielectric 2

after some distance, the electromagnetic wave in medium 1

is considerably attenuated

the solution would be to have no

energy transmitted to medium 2

dielectric 2dielectric 2

generally, dielectric media don’t guide

electromagnetic waves efficiently

is this possible?

EE 0809Incidence 63

Faculdade de EngenhariaTotal internal reflection

medium 1

z

x

medium 2

tθrθ

nta transmitted

nia

incident

nra

reflectedti nn θθ sinsin 21 =

21 nn >

Snell’s law of refraction:

it θθ >

Critical angle:

no transmitted wave to

medium 2ci θθ ≥

º90thatsuch == tic θθθ1

2arcsinnn

c =θ

Total internal reflection

cit nn

nn

θθθ sinsinsin2

1

2

1 ≥= 1sin ≥tθ 1sinsin1cos 22 −±=−±= ttt j θθθ

EE 0809Incidence 64

Faculdade de EngenhariaTotal internal reflection

medium 1

z

x

medium 2

tθrθ

nta transmitted

nia

incident

nra

reflectedTotal internal reflection:

ti

ti

θηθηθηθη

coscoscoscos

12

12

+−

=Γ⊥it

it

θηθηθηθη

coscoscoscos

12

12|| +

−=Γ

1sin ≥tθ

1sincos 2 −±= tt j θθ

Lossless and nonmagnetic media:εµ

η 0=

rrrn εεµ ==

n0η

=

ti

ti

nnnn

θθθθ

coscoscoscos

21

21

+−

=Γ⊥

Reflection coefficients:

it

it

nnnn

θθθθ

coscoscoscos

21

21|| +

−=Γ

( )( ) 1sincos

1sincos

22

21

22

21

2

1

2

1

−±

−=Γ⊥

inn

i

inn

i

jnn

jnn

θθ

θθ m ( )( ) 1sincos

1sincos

22

12

22

12||

2

1

2

1

−±

−±−=Γ

inn

i

inn

i

jnn

jnn

θθ

θθ1| | =Γ=Γ⊥

EE 0809Incidence 65

Faculdade de EngenhariaTotal internal reflection – evanescent waves

medium 1

z

x

medium 2

tθrθ

n ta transmitted

n ia

incident

nrareflected

1sincos 2 −±= tt j θθ

zxa ttnt ˆcosˆsinˆ θθ +=

rajk nter

⋅− ˆ2

wave propagating along +x

amplitude decreasing exponentially with z

tt xjkzk ee θθ sin1sin 22

2 −−−

( )zxjk tte θθ cossin2 +−

spatial variation of fields in medium 2:

evanescent fields

EE 0809Incidence 66

Faculdade de EngenhariaProblem

(a) the direction of propagation of the incident wave and the angle of incidence;(b) the magnetic field phasor of the incident wave;(c) the propagation directions of the reflected and transmitted waves.(d) the electric field phasors of the reflected and transmitted waves(e) the fraction of the incident power that is transmitted to the dielectric

formulae

The electric field of a uniform plane wave propagating in air is given by .ˆ )34(0

zyjeExE +−= πr

This wave is incident on an interface with a dielectric medium with refractive index 2 that occupies the region z>0.

Find

EE 0809Incidence 67

Faculdade de EngenhariaProblem

formulae

EE 0809Incidence 68

Faculdade de EngenhariaProblem

formulae

Lossless media: