E - Indico - CERN

37
Trends in Detector Research and Development Francesco Forti INFN and University, Pisa 1

Transcript of E - Indico - CERN

Page 1: E - Indico - CERN

Trends in Detector Research and Development

Francesco FortiINFN and University, Pisa

1

Page 2: E - Indico - CERN

F.FortiDetector R&D

We need eyes to see2

Page 3: E - Indico - CERN

F.FortiDetector R&D

We need eyes to see2

Page 4: E - Indico - CERN

F.FortiDetector R&D

We need eyes to seeWishful thinking

2

Page 5: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Frontier Detectors for Frontier PhysicsTypes of particles to detect

Known knowns: e, µ, γ, π, K, p, n, ...

Known unknowns: DM, WIMPS, ...

Unknown unknowns: ?????????

3

Dark Matter GridPix Test in an Ar TPC R&D

Dark matter

hypothetical candidate: weakly interacting massive particle (WIMP)

Rolf Schon (Nikhef) GridPix for dark matter search 2Technology and industry

Application and society

Page 6: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Long R&D process

S. C

ittol

in

LHC ca. 1515 A.D.

4

Page 7: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Very diverse R&D is required

5

E. R

ambe

rg, F

NAL

DR

D20

10

Page 8: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Very diverse R&D is required

5

E. R

ambe

rg, F

NAL

DR

D20

10

The Energy Frontier•At LHC High Lumi, reduce granularity to less than 50um•Develop Vertex detectors that withstand 1016 n/cm2

•Develop trigger that can  keep up with luminosity of 1035

•At Lepton collider, obtain 4um point  precision tracking•Hadronic jet  energy resolution of  30%/sqrt(E)

Page 9: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Very diverse R&D is required

5

The Intensity Frontier•Find a low-cost photodetector for 300kton water (105 PMTs)•Develop an robust and operable 20ton Ar(Xe) TPC detector•Develop ps level TOF techniques for rare decay tagging

E. R

ambe

rg, F

NAL

DR

D20

10

The Energy Frontier•At LHC High Lumi, reduce granularity to less than 50um•Develop Vertex detectors that withstand 1016 n/cm2

•Develop trigger that can  keep up with luminosity of 1035

•At Lepton collider, obtain 4um point  precision tracking•Hadronic jet  energy resolution of  30%/sqrt(E)

Page 10: E - Indico - CERN

F.FortiDetector R&D F.FortiDetector R&D

Very diverse R&D is required

5

The Intensity Frontier•Find a low-cost photodetector for 300kton water (105 PMTs)•Develop an robust and operable 20ton Ar(Xe) TPC detector•Develop ps level TOF techniques for rare decay tagging

The Cosmic Frontier•Reduce background in DM detection to 1 nuclear recoil/ton/yr•Develop different detection techniques for DM•Expand the depth of observation in the galaxy to probe DE.

E. R

ambe

rg, F

NAL

DR

D20

10

The Energy Frontier•At LHC High Lumi, reduce granularity to less than 50um•Develop Vertex detectors that withstand 1016 n/cm2

•Develop trigger that can  keep up with luminosity of 1035

•At Lepton collider, obtain 4um point  precision tracking•Hadronic jet  energy resolution of  30%/sqrt(E)

Page 11: E - Indico - CERN

F.FortiDetector R&D

LHC luminosity forecast 5

LS1 (phase-0): To design conditions: consolidation of the superconducting circuits

~2022: Beyond design New magnet technology for the IR New bigger quadrupoles ! smaller β* New RF Crab cavities (?)

LS2 (phase-1): Main upgrades of the injector chain (Linac4) and Collimation system

F.Pasto

re - PM

2012, La Bio

do

la

now 2013/2014 2018 2022/2023 Year

7x1033

1x1034

3x1034

7x1034

Lum

ino

sity

[cm

-2 s-1

]

LS1

LS2

LS3

(HL-

LHC

pro

jec

t)

50 fb-1 300 fb-1 3000 fb-1

Phase-0 Phase-1 Phase-2

20 fb-1

Luminosity leveling (250/fb/y)

8 TeV & 50 ns

13 TeV & transition to 25 ns

14 TeV

The Energy FrontierLHC People very busy with Phase 1 upgrades (now and 2018)

Mostly improved engineering, no substantially new development

Will need real R&D effort for Phase2 (uncharted)

Other similar detector efforts on various time scales:

ILC, Belle-II, BES-III, NA62, ....

6

?

Technology is not there for LHC Phase 2

Admirable achievements in complex engineering and integration

T.S.

Vird

ee: K

rako

w 20

12

F. P

asto

re, P

isa

Mee

ting

2012

Page 12: E - Indico - CERN

F.FortiDetector R&D

Vertexing and Tracking

Granularity is required by physics

Large number of pile-up events

Heavy flavour ID with vertices

2-track separation in jets

Readout Speed, Radiation hardness

Low Material

7

Strips and Hybrid pixels 50-100s um

Speed, less material, 25um and less

Today 50-100s umToday 50-100s um

3D Vertical integrationThrough silicon viasMicro bump bonding

Today

G.R

izzo:

PM

201

2

Day After Tomorrow

Monolithic pixels, 25-50 um

PREAMPL

SHAPER DISC LATCH

CMOS MAPS

Tomorrow

G. C

asse

, VC

I 201

3A

. Cat

tai:

Kra

kow

2012

Page 13: E - Indico - CERN

F.FortiDetector R&D

Silicon challenges:Speed, material, granularity, rad-hardness, efficiency

Competing requirements force to look in many directions

Strong connection with electronics industry

CCDs, CMOS sensors, 65nm, diamond, ...

8

G. C

asse

: VC

I 201

3

DEPFET: internal amplification

C. K

offm

ane:

PM

201

2

Vertical Integration: a new view on interconnections

MIT-LL 3D-IC process FDSOI oxide-oxide bonding

First wafer

Face-Face

Back-Face

Via last

E. R

ambe

rg: V

CI 2

013

C. D

a Vi

à: P

M 2

012

3D Detectors: improve speed and rad tolerance by lateral collection

Around 30 ! m

+ ve + ve - ve

holes

300 ! m

n - type electrode

p - type electrode

electrons

Particle Around 30 ! m

+ ve + ve - ve

holes

300 ! m

n - type electrode

p - type electrode

electrons

Particle

300

+ve+ve

holes

-ve

electrons

Lightly doped p-type silicon

n-typeelectrode

p-typeelectrode

Particle

+ve+ve

holes

-ve

electrons

Lightly doped p-type silicon

n-typeelectrode

p-typeelectrode

Particle

! m ! m

Monolithic detectors: reduce material, pixel size, increase speed

1.3×1015n

eq cm-2

Strip Doses

Pixel Doses

n-in-p detectors

radius

Silicon-on-Insulator: combine det + CMOS

Expensive developments

Page 14: E - Indico - CERN

F.FortiDetector R&D

Smart detectorsGranularity is not enough for high rates

LHC @ 1034 cm-2s-1: 200 events overlapping

Build track segments or measure pt at sensor levels and use track in LVL1-2 Trigger

Use 3D chip technology

9

Vienna, February 15th 2013 A. Cattai @

need to reduce the rate of non interesting events

17

LHC @ 1034 cm-2s-1 ! 200 events overlapping

Pixels & trackers shall exploit new concepts: ! build track ! use tracks at L1,2 trigger Strategy @ HL-LHC & LC

pixels layer strip layer

a a

A. Cattai @ E. Ramberg N. Pozzobon

Vienna, February 15th 2013 A. Cattai @ 18 E. Ramberg

Analog signals goes through a think interposer

Top detector

Content Addressable Memory

Bottom detector

thin layer of active semiconductor

Bottom detector

signals from top and bottom detect. are processed in a 3D vertically integrated chip

Higher read out speed Integrated analog and digital layers Trigger decisions are done at the detector le vell

!"#$%&' ()*+,--,.,/*0*"12*3&*45678*459::;5 <

!"#$%&'()*+,#$-).-#%!&/0-1$&/233#/$4052-$2*#06$,)-0,$%&$/#-).5!/+-!2).

‣ =;>;7?9,/*,@*/655,A*7>B=?;5=C*7B?*,/*"D

‣ E6??;5/*F9?*7,55;>6?9,/*9/*7>,=;>G*=E67;H*=;/=,5=C*>,76>*?56/=I;5=;*H9=E>67;J;/?*?,*J;6=B5;*?F;*E65?97>;*?56K;7?,5G

‣ >,76>*H9=E>67;J;/?C*@B/7?9,/*,@*7B5I6?B5;*LMN*E4O*6/H*J,HB>;*E,=9?9,/P,59;/?6?9,/

‣ 5;6=,/6.>;*6EE5,Q9J6?9,/=C*@>6?*=B5@67;P7G>9/H;5*LRON*=J6>>*=;E656?9,/*7,JE65;H*?,*>;I;5*65J*)))

‣ LRO*H9@@;5;/?*7,55;7?9,/*,@@=;?=*6EE>9;HA9?F9/*H9@@;5;/?*=;7?,5=*,@*6*J,HB>;

‣ LRO*E,=9?9,/*H;E;/H;/?*677;E?6/7;A9/H,A=

‣ 677;E?;H*7>B=?;5*E695=*S*5!+4*

N. P

ozzo

bon,

VC

I 201

3E

. Ram

berg

, VC

I 201

3

Content addressable memory in each layer

BABAR SVT - nor related

!"#$"$#% #&%'()*++,-%./0,%122345-%6+7,%89,+:%

!"#$%&"'(#)*+,'

Page 15: E - Indico - CERN

F.FortiDetector R&D

Advanced materials and poweringGranularity, speed, local intelligence, bandwidth, complexity --> high power, many cables

To keep radiation length under control need

advanced materials and integration

advanced powering schemes

heat management integrated in detector design

10Niklaus Berger – VCI, February 2013 – Slide 17

!"#$%&&'()#*+",$",&-$.$/"0$1"2%,3$4567$89$)"$:;11$

!"#$"%#& %!&'()*++,-&./0,&122345-&6+7,&89,+:&

!"#$%&'&!()%*+&,#-%.(#*&/012%-&

•  ;*9&*<&02=>/?20&@,92=/,+&@*>2A&*B9&*<&9=,?C/45&=25/*4&

•  D2E&B+9=,F+/5G9&@2?G,4/?0&•  HI#&?**+/45&

5<=>=/?$

JK5=,A2A&

#&3@20&9G2&4B@72=&*<&K/L2+&E/9G&+200&@,92=/,+&M20K2?/,++:&/4&9G2&<*=E,=A&=25/*4N&

CMS Pixel

Mu2E

HV-MAPS on 25 umKaptonDetector thinner than a hair0.1% X0 / layer

N. B

erge

r, VC

I 201

3G

. Bol

la: P

M 2

012

Micro channel cooling in CF and Silicon

F. B

osi:

PM 2

012

Page 16: E - Indico - CERN

F.FortiDetector R&D

Gas detectorsWorkhorse: dependable, inexpensive, low mass

Large area tracking, PID, calorimetry

Wires replaced by Micro Pattern Gas Detector, althoug drift chambers still going strong

Time projection chambers - beautiful for low rate environments

11

!  "#$%&'#(#)*+*$,&!  -*./&0#*1&!  2(#3%&"%45+6751&!  8*9%&"%45+6751&!  :1%;.,&"%45+6751&!  <.%*1.&=;5(%;7%4&!  >51&?#3@A5B&"%C63751&!  =/5$51&D%%C)#3@&"%C63751&

!"#$%$&%'("&')&$*%+","-./"0)#"12/"!  !"#$%&''()"'"*+,%!  -.#$%/01%2+3%456%*6,43&'%43&*7",8%

9:;<=;9<>9% 0?%1+'&)%(%.1/01% 9%

@+45%A&)6B%+,%456%CD&34"*'6%E+FG%D&3&B"8H%

@6,*5H&37%D3+*6))$%6I6(%(J%KLM%L(JNN%%!"#$%&"'"()*+,O+H6,4PH%36)+'P4"+,%%!Q>;D/R%S9?><(=%T6U;*%F"45%V6346W%*+,)43&",4%!Q>;D/R%SX?><(=%T6U;*%/01%+,'Y%Q9<<%D+",4)%F"45%><<%N%36)+'P4"+,%",%Z"R%%9(43&*7%)6D&3&4"+,$%9%HH%",%Z" &,B%[%HH%",%\%",%&%5"85%B6,)"4Y%A&*783+P,B%%O&463"&'%APB864$%S=]%^<%",%456%A&336'%368"+,M%S9=]%^<%",%456%6,B*&D%368"+,%

@_`?=%/%

LCTPC for ILC

P. C

olas

: PM

201

2

Page 17: E - Indico - CERN

F.FortiDetector R&D

!"##$%&'(#$%)*'+%',+-#./012$#%'31*'4$&$-&.#*'5($-6%.7.8+$*9'

Electrons

Ions

:;'<'

=;'<'

,+-#.>$81*' 3?,' (@3?,' ,@A0' B%8#+)'!"

2

A$>+-.%)"-&.#'B%)"*&#C'&$-6%.7.8CD''• "#$%&%'(&$%)*+,$-"• ".&/$(0)"• "1%+20)"• "3%,(0)"• "4+56*",%7&,*%/677(0)"""

Gas Electron Multiplier

Microhole and strip plate GEM

Thick GEM

L. R

opel

ewsk

i, PM

201

2

Page 18: E - Indico - CERN

F.FortiDetector R&D 13

A. C

atta

i, VC

I 201

3

Page 19: E - Indico - CERN

F.FortiDetector R&D

Particle IdentificationEssential to identify decays when heavy flavour are present: everywhere

Three legs: dE/dx, Time-of-flight, Cerenkov radiation

Admirable workmanship in radiators and light transport: in gas, solid, liquid, aerogel, cold, warm

14

Alice

Excellent PID capabilities by combining different techniques over a large momentum range

A. D

i Mau

ro, V

CI 2

013

A. C

atta

i, VC

I 201

3

Page 20: E - Indico - CERN

F.FortiDetector R&D

Many clever techniques and geometries1. Time of Propagation Counter (TOP)

Measure both position and time of photons with MCP-PMT(40ps)

2. Focusing Aerogel RICH

Hybrid Avalanche Photo Diodes

15

!"#$%!&'($")$#*+,-.-/&+01$2+30/(*$Ring imaging Cherenkov detector.

The Cherenkov photons travel in the quartz bar as they are totally reflected on the quartz/air boundaries. Measure (TOF+TOP) to identify K/ .

nC1cosTOP

C

e

e+

TOF (~1 m)

2 cm

TOP

Mirror Compact Nonmassive

Air (n=1)

Quartz (n=1.47)

@ 400 nm

Air (n=1)

K

5 K. M

atsu

oka,

VC

I 201

3

!

!"#$%&'&()!*$+,-&./!01#$/12!3456!71-&/.

!"#$%&#'(&)"'%*+#,'*%-

! .&/&0&123&%45#+#*,"'&6&789:;&!4<2)! "54+#*,"'&,'&=#>'4*,)&?,4$(&7:;@! $,=,*4(&#A#,$#B$4&%5#)4&CDEF&==! +#(,#*,"'&*"$4+#')4&G'HIJ

K4$4)*4(&*L54-&

5+"M,=,*L&?")N%,'>&#4+">4$&OPQRS")N%,'>&#4+">4$&+#(,#*"+

TU"*"'&(4*4)*"+

DF&)=

QU4+4'V"A5U"*"'%&

QU#+>4(5#+*,)$4&

! W'.&C&7:F;! X

QG3J&Y&9FZ&=+#(&6&9:;&!4<2)&

! XQG3J&8&X

QG[J&\&9F&=+#(&6&9:;&!4<2)

! 5,"'&*U+4%U"$(&F://&!4<2)H&! V#"'&*U+4%U"$(&7:;/&!4<2)

! '4N*+"'&?$N4')4-&N5&*"&C7F7D&'2)=D! +#(,#*,"'&("%4-&N5&*"&C7FFF&!L

]&*"&,')+4#%4&*U4&'N=B4+&"?&5U"*"'%&&&&&&&&&&&&&&&&&&&^,*U"N*&(4>+#(,'>&*U4&+4%"$N*,"'

]

@:P,_,=#H&K:1"+5#+&4*&#$:&`Pab;/E&GDFF;J&9E9

T+""?&"?&*U4&5+,'),5$4&^,*U&ab&Ta@%&DFF7&

Bel

le-I

I

!

!"#$%&'%()*('+,((-./0123(456267(289

!"-:;<:='()*('+,((-./012645668719

>?*%'&$+'*)=(@ABC)%;D(EFB(')%$G)+((@H2"69,(+:G<*(GA:=);(I(-

=)*H3E(

!:J/(2?2BB5(K(+:G<*(GA:=)1E(F<"((26(LB(/MJ(J/N(

-)A

*%$@

(%'

=:'*:$@(

='B'G

)

!"#$%&'#(')"&'*"#)#'+&,+#-'(D(3(F'@=:='*);

0G:@G

O0JP((

J"(#%:Q'@()*('+,((-./091R(456617(25E

S"J);*$*@:T,(U)++)5(0S.MOVWM.5623

!"#$%&'%()*('+,((-./0138(456227(215

ALI

CE

VH

MPI

D

LHC

-b

R. P

esto

nik,

VC

I 201

3

!"#$%&'(($()%*'+$

C4F8O  gaseous  radiator  

CsI  Coated  THGEM

A. D

i Mau

ro, V

CI 2

013

Time Of internally Reflected

Cherenkov light

(TORCH)

Quartz radiator

TOF with 15ps resolution

H. S

chin

dler

, VC

I 201

3!

"#$ $"%!"#$#%&'$"#() *+!,-.'$)/ 01#()

!"#$#1

& "'()* #+,--./ $/,0.1 %'-2 ./.(0)*- 34/0'5/'.)6

& 7',3.0.) 89: 3; /.-<0+ 8=:: 3

1 >'<+ <,'-& 89:? @*) 0A* 60,<. 025.

B,60 0'3. ).65*-6.$4/6. ),'6. 0'3. C=::56; %%D C !:56

1 (,- *5.),0. 4-E.) +'<+ 3,<-.0'( @'./E F89%G!"#$%&'()*+*#

,)-##&%

./00 1

.20 1

!"#$%&'(')%*+"

,-

./0&)12""'(

Page 21: E - Indico - CERN

F.FortiDetector R&D

Photon detectorsKey element PID system (and others)

16

High gain > 5*105 inside B-field

Very high time resolution << 100 ps

Fine granularity. Long lifetime

High detection efficiency (very few γ !)

High rate stability (several MHz/cm2)

Large Area Picosecond Photodetectors

Technologies....cost

Large area: MPGD + CsI

Small area: MaPMT, MCP-PMT ($$$)

R&D: Large area MCP, (d)SiPM

20 ps very hard to achieve (system)

“Cheap” 20x20 cm2 tilesMany applicationsTime resol 15ps Enormous potential!"

!"#$%&'()*+',)-.

"/'0+',1/')-$#234-)..$!"# 5'6/*$4-)..$.&2.,7),+

68+)9$4-)..+:9+'.10+$4-)..$97/6+..1'4

!!

!!!"#$%&'()*#+,'$-$)+$.+#'/+0$1'2+$33!'450*#')3'6$*#'.,'3)+7839:##5)52''!';+$1'%$5#+!'<0'%)53&'3)52+#'=>'9$.+#!'?0*@+$:'*#3)25!'=)2"'.$5*()*1"'AB'C'0.D#91''8'*#3)25#*'/0:'/$31'1)6)52

!#:$6)9'.0*,'%$97$2)52')3'$'%$:$++#+'E$5*'90++$.0:$1)-#F'#//0:1'$1'G#:7#+#,'HHI'

J+$33'K$97$2#'ELBMLB96LF

Atomic Layer Deposition A

. Ela

gin,

VC

I 201

3

Page 22: E - Indico - CERN

F.FortiDetector R&D

CalorimetryHomegeneous Crystals: CsI, LYSO, ...

Best possible resolution

Application to PET, homeland security ...

Sampling:

Imaging: Particle Flow Algorithm

Dream: Dual readout

Sampling with Crystals shashlik

17

LYSO is the expensive king of crystals: fast, high light yield, rad hard.

Industrial R&D to reduce cost

Pure CsI is cheaper: fast, but low LY

R&D on photsensors

!"#$%&'( )&*+,'-( !$*+,'-( !$*( ./0( 1230+!4-(

!"#$%&'()*+,-./( .012( 3045( 3045( 60.( 205(

7"8&%#*(9:%#&();</( 145( 1=5( 1=5( 55=.( =>4>(

?@A%@&%:#(B"*&C(),-/( =04D( 5064( 5064( >0D( 5053(

7:8%EF"(?@A%G$(),-/( 306( .042( .042( =0>( =0=(

H'*F:$,:I%,%&'( '"$( $8%*C&( $8%*C&( #:( #:(

BG-%#"$,"#,"()#-/( 35>( 41>( 3=>+.5>( 41>+3=>( 3=>(

!",@'(J%-"()#$/( =.>( 5=4>( .4+1( .>+5>( 34(

B%*C&(KG&IG&()L/( 5>>( 514( .01+505( >0.+>0>6( 6>(

A)BK/+AJ()L+;</( M>( >0.( N>01( N50D( N>0.(

?@A%@&%:#(!@-@*"( O"$( 5>L+PF@A( =L+PF@A( Q-@88( Q-@88(

53+>=+=>5.(1( R0(?:$$%(N(5.&C(S%"##@(<:#T"F"#,"(:#(U#$&FG-"#&@&%:#(

1230(!"#$%&'$(544%$(&''(%64("4789"454:%$(;<=(>&5?&9@:($%&"%4A(9:(BCDC(E9%6('&FG"&%G"#(&:A(F4&5(%4$%$(

A. R

ossi

, VC

I 201

3

!"#$%!&'()*+,-./01 2111 3111 4111 5111 6111 7111 8111 9111 :111 211111

61

211

261

311

361

!"#$%&'("#)%"*+(#,+-./%

!"#$%#%$!&'()'*+,,-'.'!&/0'1-2334'5+36272382'+3'93,/7:;23/4/-+3'!<'

=>/748/'?@'A-728/BC'67+;'A4/4':,-3D';:B/-'E47/-8B2'2F23/,'(,,:;2'A-66272382'-3'72,+B:/-+3'G2/H223'I'2.'H-/0'2327DC'='43A'!'2.'H-/0'2327DC'I>='-,'A:2'/+'A-662723/'G24;'2327DC',E724A'JG/4-3'G24;',E724A'43A';4/7->'72,+B:/-+3'67+;';-3-;-K4/-+3'

!"#$%&'( )(( *(( +(( ,(( -(( .(( /(( 0(( 1(( )(((

2!"#3

'!

(

)

*

+

,

-

.

/

04%56"11"$%&4%56")10"$%&4%56"*1/"$%&4%56"+1/"$%&4%56",0/"$%&7898":;<=>;?>@"A%?BCD<>B;$%5?D=%E"4%56"FG=%5E

!L<'M21'

!'2.'

%'2.'

&'2.'

M:B/-'2B28/7+3'72,+B:/-+3'6-/'

SuperB

!"#$%&'(

!$&)*!+&,-(

.//!0(1230.4(

!"#"$%&'()*+",-.)/01.2*3145"*'"/6' 131'

!$&)*!+&,-(

1/5,78'92*''-/'#:5'-//5,'"/6'-/'#:5';:)<5'(,8.#"<.'*"#,-='"#'>??'%5@'' '

.//!0(1230.4(

5678!(1230.4(

5678!(1230.4(

5678!(1230.4(

%"8'A?$ABC'A?>A' D<5.."/6,"'E2(F'G'>A#:'H-."'%55#-/7' >B'

Mu2E

A. L

ucà,

PM

201

2R

.-Y.

Zhu

, TIP

P 20

11

Page 23: E - Indico - CERN

F.FortiDetector R&D

Imaging calorimetersHigh granularity can be expensive

Need industrialization and engineering of sensors

18

J. R

epon

d, V

CI 2

013

!"#$"%"&'($&")*+,-*%

.$

./.0$

./1$

./10$

./2$

./20$

./3$

4$ 0.$ 1..$ 10.$ 2..$ 20.$

Jet Energy (GeV)

Jet E

nerg

y R

esol

utio

n !

/Eje

t (%

)

PFA simulation

ILC goal

ATLAS simulationH1 measured

ALEPH measured

CDF measured

DREAM measured

The Technological Prototype

The Technological Prototype: Proof of EngineeringFeasibility

❆❆❆❆❆

Alveoli of 7.3mm and 9.4mm height

Realistic dimension: 3/5 of a barrel module.

Integrated front-end electronics.

Large mechanical structure.

Test of power-pulsed electronics: 5Hz and

1% duty cycle.

Study of various approaches to cooling.

Jeremy ROUENE LAL SiW ECAL February 14, 2013 9 / 18

Silicon-W sandwich ?J.

Rou

ëné,

VC

I 201

3

Page 24: E - Indico - CERN

F.FortiDetector R&D

Dual Readout Dream -> RD52Distinguish the scintillation and Cherenkov light in hadronic showers

Compensate e/h ≠ 1event by event

Tried in crystals and fibers

19

!"#$"%&'()*%%$(+&,"(-./0(1.$23.*3$(

!"#"$%&'()&*(+*& ,-./&#0123&03&456&789:-9;&4-.890<2%9=&,-$/&789>2&522%03#&-%&4?@A&B=&@23C="-3&DE")&4-.%2>E& F&

G%&0$&03%292$%03#&%8&$22&:E-%&0$&%E2&2329#=&92$8."%083&-3;&

%E2&HE8%83&-3#".-9&92$8."%083&:0%E&.83#0%";03-.&

$2#<23%-%083I&

R.-

Y. Z

hu, T

IPP

2011Sampling with crystals with shashlik readout

R. W

igm

ans,

VC

I 201

3

!"#$%&'#&()*(+,-#./!$

!""#$"%&'()*(+*,-&.(/)-$""&,0&+.$&1.,+,2)$+$3+,/&(-)&

+.$&456&0*7$/

%1E%10

EE

'8298&:.#;&<=6&>,/?(/)&<(@,/*A$+/B&=$$+*-C&(+&<D'E;&FGHIGHJ

K#-$&L;&MJHH MNO(@P&C*Q$-&*-&O!RR&MJHH;&<.*3(C,;&7B&'$-2B#(-&:.#;&<(@+$3.

Optimizeperformance vs cost.

Page 25: E - Indico - CERN

F.FortiDetector R&D

Electronics, Trigger and DAQ• Detectors are deaf dumb and blind

without good electronics, trigger, DAQ

• Greater design complexity requires shared tools and knowledge

• HEP is still incredibly small compared to consumer electronics

20

• Trigger/DAQ Ingredients:

Fast and large FPGAs

Fast bus (μTCA ?)

Fast links and switches (10Gb/s)Fast TracKer (FTK) for Level 2 trigger •  Provides tracking parameters at full L1 rate

(100kHz) within O(100μs) L2 latency –  Enhancing !the !capability !for !b /!τ

tagging !and !lepton isolation –  Optimizing L2 selection

•  tracks available earlier

–  HW based •  Track finder with AM chip + high resolution track fit

F.Pasto

re - PM

2012, La Bio

do

la

29

2010: Technical Proposal 2012: slice with prototype boards 2013: full prototype and TDR Phase-1: full installation

Curvature and impact parameter FTK resolution compared to offline

Pattern recognition

• Associative memory based trigger

• Proven in CDF

• Proposed in Atlas, CMS, LHcb

!"#$%!&$'()*#++)($,+$-.$"-(/0-(#$+1+2#3$4-+#/$

).$-.$#52(#3#$'-(-66#6,7-2,).8$*)3')+#/$41$9:;$

'()*#++,.<$=.,2+$

>2$'#(?)(3+$2(-*@,.<$,.$2"#$0")6#$/#2#*2)(A$

>2$,+$*-'-46#$)?$)'#(-2,.<$-?2#($#-*"$B#C#6$:$

-**#'28$='$2)$:DD$&E78$0,2"$-$6-2#.*1$6#++$2"-.$

$-2$6=3,.)+,21$='$2)$ A$

$

!"#$%-+2$!(-*@#($'()*#++)($,+$/#+,<.#/$2)$(#-/$-66$2"#$+,6,*).$

6-1#(+$)?$2"#$>..#($F#2#*2)($G>FH$

I$',5#6$6-1#(+8$J$0"#.$>KB$0,66$4#$,.*6=/#/$$

J$'-,(#/$LM!$6-1#(+$

NJ$,./#'#./#.2$ O $2)0#(+8$9:;$'-(-66#6$'()*#++,.<$=.,2+$

!"#$%&'()*&+,&+$-./0$1'2%3$,2*45%#$'$1*,6$*7$+"#$8.9$%'+'$+*$$:$1"';;#(3$<90=$';%$>!?@A$B#,'2'+#%$%'+')7(*C$1*;+2*($7*2$#'1"$1"';;#($D2*%&1+5*;$1*E,(#+#%F$$

0(($:GH$1'2%3$,2*%&1#%$';%$+#3+#%$*;(6$:$7'5(&2#3I$J*+"$75K#%$

L:$'(2#'%6$5;3+'((#%$C5+"5;$+"#$90=$363+#E$'+$';%$2#'%6$+*$+#3+$'$3E'(($31'(#$%#E*;3+2'+*2$<+"#$M#2+51'($B(51#I$MB@$+"53$3&EE#2$

$

$

!"#$/,+*)C#(1$')2#.2,-6$)?$2"#$P!BPL$/#2#*2)($

/#'#./+$).$2"#$-4,6,21$2)$,/#.2,?1$(-(#$#C#.2+$-./$

(#Q#*2$4-*@<()=./$?()3$',6#O='$)?$3=62,'6#$'O'$

,.2#(-*2,).+A$

!(-*@,.<$,.?)(3-2,).$,+$'()C#/$-+$-$

')0#(?=6$2))6$?)($#-(61$(#Q#*2,).$)?$',6#O='$

4-*@<()=./$4=2$2"#$-3)=.2$)?$,.?)(3-2,).$*-.$

4#$)C#(0"#63,.<A$

!"#$'-22#(.$3-2*",.<$*-.$4#$'-(-66#6,7#/$0,2"$2"#$=+#$)?$

+'#*,-6$MPRO6,@#$3#3)(,#+8$=+,.<$'-(-66#6$3-2*"O6,.#+$

2"-2$*)3'-(#$2"#$,.*)3,.<$",2+$0,2"$-$6,+2$)?$'"1+,*-6$

'(#O*-6*=6-2#/$'-22#(.+8$=+,.<$-$*)-(+#($(#+)6=2,).$

ij jiji qxCp

>.$#-*"$?)=./$()-/$2"#$'-(-3#2#(+$)?$

2"#$2(-*@$*-./,/-2#+$*-.$4#$*-6*=6-2#/$

#5'6),2,.<$$6,.#-(,7#/$*).+2(-,.2+$

4#20##.$2"#$",2$')+,2,).+$-./$"#6,5$

'-(-3#2#(+A$

S-2=(-661$'-(-66#6$-''()-*"8$0#66$+=,2#/$

?)($3)/#(.$%TUP+$

!"#$%&'()*$%"++$,-$%./0$'0"%/1/%2++3$4"'/56"4$1)7$89:$

;<:=02(("76'$0"7$%./0$>?$6*$("%.6)+)53$;@+23"7$27%./("%(&7"$,+("762("$,!A$264$!BC$%"++'$()$7"4&%"$(."$0)#"7$D27/2E+"$7"')+&(/)6$()$)0(/*/F"$"11/%/"6%3$264$6&*E"7$)1$02(("76'$

!"#$0N$J*'2%$1*;+'5;3$O$/0NP$1'2%3I$L:$1"5,3$#'1"A$9#E';%5;QF$RHH$0$'+$RA:$M$O$OSM RA:M$9T)9T$1*;4#2+#23$0J*&+$:$UQ$7*2$#'1"$0N$J*'2%$

!"#$%'+'$1*E5;Q$72*E$+"#$-./0$1'2%3$'2#$1(&3+#2#%$J6$+"#$>!?VWN$1'2%A$

!"#$9'+'$>*2E'++#2$<9>@$"'3$$+"#$2#3,*;35J5(5+6$+*$3&J%545%#$+"#$%'+'$';%$3#;%$+"#E$+*$+"#$',,2*,25'+#$ ) $+*C#2A$0%4';1#%$%#35Q;$3+'Q#$J'3#%$*;$0!T0$

12'+#$C5+"$7&(()E#3"$J'1U,(';#$

!"#$0XY$1'2%$2#1#54#3$';%$3+*2#3$$+"#$7&(($2#3*(&+5*;$1(&3+#23$72*E$+"#$9>$';%$3#;%3$7*2$#'1"$1(&3+#2$'$1*'23#2$2#3*(&+5*;$,*35+5*;I$+"#$3&,#2)3+25,I$+*$+"#$0N$7*2$+"#$,'++#2;$E'+1"5;QA$.;(6$S$*&+$*7$RR$35(51*;$+2'1U5;Q$('6#23$

'2#$&3#%$'+$+"53$3+'Q#A$!"#$1'2%$2#1#54#3$J'1U$+"#$E'+1"#%$2*'%3I$2#3+*2#3$+"#$7&(($2#3*(&+5*;I$';%$&3#3$+"#$$(5;#'2$1'(1&('+5*;$+*$

%531'2%$2*'%3$C5+"*&+$Q**%$1';%5%'+#$+2'1U3A$

!"#$:;%$3+'Q#$J*'2%$1*EJ5;#3$+"#$+2'1U$1';%5%'+#3$7*&;%$J6$+"#$0XY$1'2%$C5+"$+"#$'%%5+5*;'($L$BT!$('6#23$;*+$&3#%$5;$+"#$,'++#2;$E'+1"5;QA$W+$5E,2*4#3$+"#$+2'1U$Z&'(5+6$';%$2#[#1+3$'$('2Q#$;&EJ#2$*7$7'U#$+2'1U3F$72*E$OH\$$*7$+"#$S$('6#23$+*$(#33$+"';$O\A$

!"#$>/WT$J*'2%3$'2#$5;$'$%&'()3+'2$0!T0$12'+#$+*$'((*C$7*2$'%%5+5*;'($+25QQ#2$7&;1+5*;'(5+6A$]'1"$J*'2%$53$2#3,*;35J(#$7*2F$T*((#1+5;Q$+"#$*&+,&+$72*E$'(($+"#$:;%$3+'Q#$J*'2%3I$J*+"$+2'1U$,'2'E#+#23$';%$"5+3$8.B$1*EE&;51'+5*;$N*;5+*25;Q$7&;1+5*;3$D*335J5(5+6$+*$5;+#Q2'+#$(*1'($+25QQ#2$'(Q*25+"E3$*2$7&;1+5*;3$

V)6',$UA$;8J$W$P./(#-.,$PA:I8:JW$P./(#-77-$PA$:I8:JW$M,22#(,)$RA$:IW$%-C-(#2)$PA$:I8:J$W$B,4#(-6,$VA$:I8:J$W$R#().,$MA$$:I$W$X,C-$RA$:I8:J$W$L-4-2,.,$%A$:I$W$L2-4,6#$PA$$:I8$:J$W$P..)C,$PA$;$W$K#(#22-$RA$;$W$M-+2#<.-()$PA$;$W$K#C-*Y=-$VA$:8I$W$M(#+*,)6,$%A$:8I$W$%(-.*#+*)$M#(C,<.,$W$F#66Z[(+)$RA$:8I$W$U,-..#22,$TA$:$W$R-<-6)22,$FA$W$T,#./,4#.#$RA$:8I$W$M",-(-$X)/-$:8I$W$

L-**)$>A$W$!(,',**,).#$XA$\$W$%-44(,$BA$:98:N$W$%(-.*",.,$RA$:98:N$W$U,)(<,$%A$:9$W$U,-..=77,$%A$:98:N$W$B-+-<.,$%A$:98:N$W$L4-((-$MA$:9$W$V-6#.2,.#22,$LA$:98:N$W$V,66-$RA$:98:N$W$])**)6,$PA$:98:N$W$B-.7-$PA::$W$S#<(,$PA:;8$::$W$V#(*#+,$VA$::$W$K)</-.$RAJ$W$K)C#,-$PA$J$W$M-.#66,$%A$J8:D$W$M"#.<$ A$J$W$F=.?)(/$RA$J$W$E)$B,.<$B,$J$W$&-'6,1$PA$J$W$&,3$ A$&A$J8:D$W$R#6-*"(,.)+$MA$J$W$

L")*"#2$RA$J$W$!-.<$%A$J$W$!-.<$$_,-.$$J$W$!=<<6#$_A$J$W$!)3'@,.+8$BA$J$W$`#4+2#($_A$J$W$P2@,.+).8$R-(@=+$9$W$M-C-6,#(#8$V,C,-.-$9$W$M"-.<8$T",6,'$9$W$&-+2#.$RA$9$W$R*M-(.$PA$9$W$S#=4-=#($RA$9$W$E)??$_A$:D$W$B,=$!A$:D$W$_-3,#+).$[6+#.$:D$W$T#..,.<$KA$J8:D$W$!)/(,$PA$:D$W$`=$_A$:D$W$F(-@#$UA$N$W$T()=/?))2$_A$N$W$]"-.<$_A$N$W$K6-,($XA$N$W$P./#(+).$_A$$N$W$P=#(4-*"$KA$N$W$

K6-7#1$UA$:\$W$&,3=(-$SA$a$W$^)(,2-$&A$a$W$L-@=(-,$$ Aa$W$R,2-.,$$!A$a$W$>,7-0-$!A$a$$:L#7,).#$/,$T,+-8$>S%S8$$T,+-8$>2-61$;B-4)(-2)(,$S-7,).-6,8$>S%S8$%(-+*-2,8$>2-61$IF#'-(23#.2$)?$T"1+,*+8$b.,C#(+,218$T,+-8$>2-61$JF#'-(23#.2$)?$T"1+,*+$-./$c.(,*)$%#(3,$>.+2,2=2#8$b.,C#(+,218$M",*-<)8$>66,.),+8$bLP$9F#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$>66,.),+$-2$b(4-.-OM"-3'-,<.8$b(4-.-8$>66,.),+8$bLP$NP(<)..#$S-2,).-6$$$B-4)(-2)(18$$P(<)..#8$

>66,.),+8$bLP$NP(<)..#$S-2,).-6$$$B-4)(-2)(18$$P(<)..#8$>66,.),+8$bLP$\F#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$%#((-(-8$%#((-(-8$>2-61$aF#'-(23#.2$)?$T"1+,*+8$`-+#/-$b.,C#(+,218$$$`-+#/-8$_-'-.$:D%#(3,$S-2,).-6$P**#6#(-2)($B-4)(-2)(18$%#(3,6-48$K-2-C,-8$>66,.),+8$bLP$::L#7,).#$/,$T-C,-8$>S%S8$T-C,-8$>2-61$:;F#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$

T-C,-8$T-C,-8$>2-61$:IL#7,).#$/,$R,6-.)$>S%S8$R,6-.8$>2-61$:JF#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$R,6-.8$R,6-.8$>2-61$:9L#7,).#$/,$K)6)<.-$>S%S8$K)6)<.-$>2-61$:NF#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$K)6)<.-8$K)6)<.-8$>2-61$:\$S)(2"#(.$>66,.),+$b.,C#(+,21$:a$F#'-(23#.2$)?$T"1+,*+8$b.,C#(+,21$)?$T#(=<,-8$T#(=<,-$>2-61$$

Sliding window

,$'0"%/1/%$%+&'("7/65$2+5)7/(.*$/*0+"*"6("4$/6$8GH,$#2'$4"I"+)0"4J$8/7'($07)()(30"$7"243$()$E"$("'("4$/6$(."$I"7(/%2+$'+/%"$(./'$'&**"7J$

>D^0$1(&3+#25;Q$'(Q*25+"E$

!"#$%!&$2(-*@$Y=-6,21$-66)0+$2)$,3'6#3#.2-2,).$)?$

*)3'6#5$-6<)(,2"3+$+=*"$-+$KO$)($2-=O2-<<,.<8$0,2"$

Y=-6,21$*)3'-(-46#$2)$2"#$=+#$)?$)??6,.#$2(-*@+A$

>.2#<(-2,).$0,2"$#5,+2,.<$-6<)(,2"3+$=./#($+2=/1A$

T()C,/,.<$-$*)3'6#2#$6,+2$)?$2(-*@+$-2$2"#$+2-(2$)?$2"#$EB!$

'()*#++,.<$*-.$-66)0$=+#$)?$-6<)(,2"3+$2"-2$(#Y=,(#$?=66$

#C#.2$2(-*@,.<$-2$",<"$(-2#A$

!"#$%!&$?(##+$='$EB!$(#+)=(*#+$-66)0,.<$3)(#$

*)3'6,*-2#/$-6<)(,2"3+$ %().2,#($F#2#*2)(+$?)($%().2,#($T"1+,*+$;DO;N$R-1$;D:;8$B-$K,)/)6-8$>+)6-$/ 8$>2-61$

!"#$%&&%

!"!'%&&%

G.V

olpi

: PM

201

2N.

Pozz

obon

: PM

201

2

Page 26: E - Indico - CERN

F.FortiDetector R&D

Cosmic frontier: Dark Matter

21

Dark Matter: a known unknownIndirect searches: detect γ, ν, e,p generated in annihilation of unknown DM particles.

N.M

azzio

tta,

LP

2013

!"#$%&"'"()$*+'%&),,)%()-%"#."(*,"'$/%0123%)%4,5%)(()-%+6%2$,+/.7"(*8%07"("'4+9%$":"/8+."/;%<"'/*$*9*$-%)=+>$%)%6)8$+(%?@%="$$"(%$7)'%8>(("'$%201/A%)'%"'"(&-%8+9"()&"%6(+,%)%B?@%C"D%EB?@%1"DF%6*":G%+6%9*"H%+6%>.%$+%?@IA%)'&>:)(%("/+:>$*+'%8+>:G%="%)/%:+H%)/%@J@5I%02KL1%+'%M<<%3%N@%O@%6"H%P%+6%"'"(&-%("/+:>$*+'F%&++G%)'&>:)(%("/+:>$*+'%)'G%7*&7%":"8$(+'Q.(+$+'%/".)()$*+'%

K)>'87%.:)''"G%%5@?R%%%S2TUL%/)$"::*$"3%N?%O@%G".$7%8):+(*,"$"(F%%6"H%P%+6%"'"(&-%("/+:>$*+'F%&++G%)'&>:)(%("/+:>$*+'%)'G%7*&7%":"8$(+'Q.(+$+'%/".)()$*+'%

K)>'87%.:)''"G%%5@?VE5@?W%%%C),,)ER@@3%/)$"::*$"%H*$7%="$$"(%)'&>:)(%)'G%"'"(&-%("/+:>$*+'%*'%&),,)%()-/%X%7*&7%.("8*/*+'%87)(&"%.)($*8:"/%G"$"8$+(%>.%$+%/"9"():%1"D%6+(%"E%)G%U"D%6+(%.(+$+'/;%

:)>'87%.:)''"G%%5@?YJ%!"#$%&'(')'*+,-$.'/0$-$.'1234' 15'

DAMPE

CTA

Ground-based: large (km2) cosmic ray detectors.

Need cost effective solutions

Cerenkov, fluorecence

Radio and microwave detection of showers

Measurement of air showers with radio detection

Aims of the radio detection

enhance the capabilities of the Observatory in determining the UHECRmass composition

study the requirements for a very large aperture detection system in thenext generation of air shower arrays

Electromagnetic waves from air shower

several emission processes

different λ ranges

Advantages of the radio detection

high duty-cycle

cost-effective approach

Corinne Berat - LPSC Grenoble 12th Pisa meeting 25 May 2012 5 /27

Satellite

ca. 30 X0

few % of energy resolution

good angular resolution

high electron/proton separation

Tracker + calorimeter + VETO

LOW POWER - LOW MASS - SPACEC.B

erat

: PM

201

2

Page 27: E - Indico - CERN

F.FortiDetector R&D

Detectors for direct DM searches

22

C. G

albi

ati,

Lept

on-P

hoto

n 20

13

Axions convert into microwave photons in an RF cavity threaded by a strong magnetic field. Squids

WIMPS scatter off atomic nuclei: multiple signals.

e,!χ,n

[Attisha/Brown]

Saturday, June 29, 13

WIMP Detectors:Large mass. Very Pure. Background vetoLow energy nuclear recoils (< 100 keV). Low rate: 1 evt/ton/yr @ 10-47cm2

Background measurable in situ

Dilution refrigeratorand quantum-limited

amplifiers provide ADMX’s sensitivity for definitive

QCD axions search

AxionsHalo axions convert intomicrowave photons insidea RF cavity threaded by a

strong magnetic field

ADMX can definitely detect the dark-matter QCD

axion or reject the hypothesis at high

confidence

[AD

MX

Col

l.]

Saturday, June 29, 13

ADMX

WIMP detection Introduction

Techniques

Direct WIMP and axion search experiments 10/41

Page 28: E - Indico - CERN

F.FortiDetector R&D

Detector variations: many approachesCrystals (CsI, NaI, Ge, Si): kg

R&D on purity, shielding, resolution

DAMA/LIBRA, ANAIS plan on 250kg

23

C. G

albi

ati,

Lept

on-P

hoto

n 20

13

!"!#$%&'()*+,)-.%/!--012%,3402153-%6+.7%"!#%$8+-5221.3*9:

!"#$%&$'($)*+,-./$012132'45$2'$52607$281$*996*.$:'06.*;'9$1<132$*2$281$=*9(4*93$>9014&4'690$?*@'4*2'47A$?B=$,BC*D9/B*:1$2*4&12$*90$21389DE61$6510$@7$FGHGI?+JKG

!$C4'2'27C15$2*%D9&$0*2*$*2$?B=$L$!"$%&$,G)G+BM!"/$

N*:$OH-$L$KP!QQR$BS?$3'6C.10$*2$?B=$3.1*9$4'':

TU14*..$@*3%&4'690$*5155:192$'9&'D9&$

!"!#$;<=%>?&@#A#"!?B%?&$C@D$• SV31..192$.D&82$3'..13;'9$1W3D1937X$$P!MPQ$C81I%1Y• !"Z$@6.%$)*+$3'92192$[$\P]^$_$`]^$CC@• ='5:'&19D3$*3;U*;'9$5;..$013*7D9&$a$.'b$1914&7$1U1925$51.13;'9$9'2$712$(6..7$01U1.'C10

!"!#$;<=!"!#$;E/FE%'%GEH%83-.)-.:

[AN

AIS

Col

l.]

Saturday, June 29, 13

Large noble liquid-gas detectors - ton

Single or dual Phase TPC

LUX, Darkside, Xenon plan on 1 ton

R&D on detector response The double phase TPC approach

12th Pisa Meeting on Advanced Detectors

Dual phase TPC conceptArgon Calibration

Drift Field [V/cm]0 200 400 600 800 1000

S1 [PE]

10

11

12

13

14

15

16

17

elative to yield at zero field

65

70

75

80

85

90

95

100

105

[SC

ENE

Col

l. ar

Xiv

:130

6.56

75]

Saturday, June 29, 13

LY of nuclear recoil vs drift field

F. A

rneo

do, P

M 2

012

ShieldVeto

Backgroud

Page 29: E - Indico - CERN

F.FortiDetector R&D

A selection of novel detector approachesThick CCDs (DAMIC)

24

DAMIC: Dark Matter Search using thick CCDsJuan Estrada

Low noise in CCDs make a threshold of 40eV possible.

Saturday, June 29, 13

R. S

chön

, PM

201

2

High pressure Xenon gas TPC

Pisameet 2012 7

Energy resolution in Xenon depends strongly on density

!"#"$%&'"%()*&)+,-./%+#"%.-#0+1%

2%3%4567%

%8.9-1:":%#"/-1),-.;%

!<=<%>45?@%2A!B%

2-#%"%C4577%D=*0E$%F-.FG+,-.%"."#DH%#"/-1),-.%F/%“F.&#F./F*”%

Ionization signal only!

I"#H%1+#D"%()*&)+,-./%J"&K"".%

1FD'&=*'+#D"L%

2%>%M4%%LL%

!"#$%&''

()*(+'%,-./%0%%

Pisameet 2012 12

Electro-Luminescence (EL) is the key (aka: Gas Proportional Scintillation)

•  Physics process generates ionization signal!•  Electrons drift in low electric field region !•  Electrons enter a high electric field region !•  Electrons gain energy, excite xenon: 8.32 eV !•  Xenon radiates VUV (!175 nm, 7.5 eV)!•  Electron starts over, gaining energy again !•  Linear growth of signal with voltage!•  Photon generation up to >1000/e, but no ionization !•  Sequential gain; no exponential growth " fluctuations are very small!•  #NUV = (JCP • NUV )1/2 (Poisson: JCP = 1)!

•  Optimal EL conditions: JCP = 0.01 !

Dark Matter GridPix Test in an Ar TPC R&D

Alternative: direct charge readout

γ

χ • candidate technology withinDARWIN R&D(Dark matter WIMP search withnoble liquids) arXiv:1012.4767

• less S1 signal vs. highelectron efficiency (better S2resolution)

Rolf Schon (Nikhef) GridPix for dark matter search 4

Dark Matter GridPix Test in an Ar TPC R&D

The GridPix detector

• Micromegas-like mesh, 1µm Al• insulating spacer, 50µm photoresist• spark protection layer, 8µm silicon-rich SiN• Timepix readout chip

Rolf Schon (Nikhef) GridPix for dark matter search 5

Better electron efficiency

GridPix gas readout for TPC

Electroluminescence:small fluctuations. Resolution 1% @662KeVGood for WIMP and 0vββ

D. N

ygre

n, P

M 2

012

Page 30: E - Indico - CERN

F.FortiDetector R&D

Applications - blooming field

25

Many HEP Detector technologies applied elsewherePIXIRAD - INFN Spin-off

Chromatic photon counting X-Ray imaging

Large CdTe sensor with CMOS ASIC

R. B

ella

zzin

i, VC

I201

3

60um pitch30 × 25 mm2

Many Improvements to PET

AXial PET: better resolution/efficiecy

... to axial !

!"

!p "

• long crystals

• oriented along the axial direction

• several layers arrangement

always a compromise between good spatial resolution (small L, small !p)

or good sensititvity (long L)

min parallax error => short L- deterioration of the spat. resol.- non uniformity in the field of view

δp = L · sinθ

� = 1− e−µ·L

max interaction efficiency,long L

Lthe axial geometry allows for a parallax free system, in which spatial resolution and sensitivity are completely decoupled :

- improve spatial resolution <=> reduce d

- improve sensitivity <=> increase Nr layers

axial

Nr layers

d

Chiara Casella, 22/5/2012

Axial conceptaxial concept AX-PET detector AX-PET performance Tomographic images dSiPM

from radial ...

3

AX-PET demonstratoraxial concept AX-PET detector AX-PET performance Tomographic images dSiPM

Goal of the collaboration: Build and fully characterize a “demonstrator” for a PET scanner based on the axial concept. Assess its performances.

Demonstrator : Two identical AX-PET modules, used in coincidence

• two modules built - at CERN

• module performance assessed (22-Na source)

• individually

• in coincidence

• tomographic image reconstruction (with a dedicated gantry setup)

• all stages fully supported by simulations

Chiara Casella, 22/5/2012 6

- at CERN

10 cm

2.8 cm

C.C

asel

la, P

M 2

012

T.C

.Mey

er, P

M 2

012

6

EndoTOFPET-US: The Principle

Exte

rnal

PET

Pla

te

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Thomas C. Meyer, CERN, Geneva On behalf of the EndoTOFPET-US Collaboration

Endoscopic PET

30um resolutionmultiple sensors

Page 31: E - Indico - CERN

F.FortiDetector R&D

New challenges: detectors for high brilliance FELsInstruments for other fields: bio, chem, material science

Crazy range of photon energies from 0.1 eV to 10keV

26

!"#$%"&'()**'+)%),%-.'!Instruments and Techniques 23

! "! #!! #"! $!!%#!!

%"!

!

"!

#!!

#"!

$!!

$"!

&!!

&"!

'()*+,-

!"#$%&'(&)*+,-

.&$/+'&)&$%-

. ,%/012-34

56'7+8,-0*)920'()*+,-01824

'(:'7)+7-

;8!<=">+ !<$"?'0,+@

(86*9)2-AB08%59@-5;8!<="?A!<$"?'0:+))6-)

(86*9)2-AB08%59@-5;8!<="?A!<$"?'0:+))6-)

;8!<=">+ !<$"?'0CD

!0)(12,+0)3#)(

Figure 1.13: In0.75Ga0.25As/In0.75Al0.25As quantum well. The top cartoon isa sketch of the layer sequence starting from the surface (left) down toward thesubstrate(right). The bottom graph is the profile of the calculated conductionband minimum along the growth direction (black curve), and the carrier densityprofile (red line); the horizontal red line is the Fermi level.

distort the shape of the well as can be seen in figure 1.13; in this figure a self-

consistent Poisson-Schrodinger calculation of the conduction band profile

and the carrier density for one of the In0.75Ga0.25As samples characterized

in this thesis are shown.

1.5 Device fabrication

1.5.1 Optical lithography

This section describes the procedure employed for the fabrication of semi-

conductor heterostructure devices containing a 2DEG. These devices allow

to perform transport measurements on the 2DEG itself.

In the first fabrication step, properly designed structures are patterned

on the sample. The geometry of the devices used in this thesis, commonly

called Hall bar geometry, is shown in Fig. 1.14. This geometry is particu-

larly indicated to study the mobility and carrier density of 2DEGs taking

advantage of the classical Hall effect. Hall bars are typically defined through

common optical lithography and a wet chemical etching process. Fig. 1.15

shows the fundamental steps of device fabrication using optical lithography.

First, the sample to be processed (a) is covered with a positive resist3layer

3By positive resist we mean a polymer that after illumination with UV radiation be-

R. M

enke

, PM

201

2

!"#$%&'("#)*)"&+%"",)!

•  QW are promising devices for photon detection •  Intrinsically fast detectors •  Charge amplification capability •  Sensitive from IR to hard x-rays •  Position encoding possible

•  Cooling concepts •  First tests of BPM capabilities at FERMI in July or November 2012 •  Different readout schemes will be tested

•  Strips •  Pixels •  Interpolation •  Three phase CCD clocking schemes.

eV Photons

Power

Signals & Clocks

x-y Gap

128 x 256 Pixel Sensor

21 c

m (1

024

pixe

ls)

!"#$%&

'(')*

+'%,*

DEPFET Sensor With Signal Compression (DSSC)

M. P

orro

, PM

201

2

High dynamic range (104)

High speed

High bandwidth

Radiation hardness

Page 32: E - Indico - CERN

F.FortiDetector R&D

New Detectors Development

Long lead time: techonologies require 10-15 years to mature

Large costs: need for coordinated action

Transition from R&D to production triggered by experiments

27

A.C

atta

i,Eur

opea

n St

rate

gy, 2

012

Page 33: E - Indico - CERN

F.FortiDetector R&D

A wealth of detector R&D activities2013 Lepton-Photon Symposium, LP 2013:http://www-conf.slac.stanford.edu/lp13/

2013 Vienna conference on instrumentation, VCI 2013: http://vci.hephy.at/

2012 Crakow European Strategy Meeting: http://indico.cern.ch/conferenceDisplay.py?confId=175067

2012 Pisa Meeting on Advanced Detectors, PM 2012:http://www.pi.infn.it/pm/2012/

2011 Technology and Instrumention in Part. Phys., TIPP 2011http://conferences.fnal.gov/tipp11/

2010 FNAL Detector R&D Workshop:https://indico.fnal.gov/conferenceDisplay.py?confId=3356

In the slides I indicated the presenter at the meeting, often luckily a young person and not the orginal author of the work

28

Page 34: E - Indico - CERN

F.FortiDetector R&D

Detectors are our eyes

We as a field need to maintain and develop detector expertise. Today’s detector marvels are not automatically reproducible by the next generation. Three essential elements:

1. Training, organizing and stimulating participation in instrumentation schools

2. Experimenting, encouraging young experimentalists to do hands-on detector work especially in smaller, shorter scale experiments

3. Rewarding, giving proper recognition of excellence in instrumentation development in careers at universities and research institutions.

But not only.

29

Page 35: E - Indico - CERN

F.FortiDetector R&D

The view of an istrumentation physicist

30

ExcellentScience

Instrument

BetterSociety

CompetitiveIndustry

Page 36: E - Indico - CERN

F.FortiDetector R&D

More detectors

31

Page 37: E - Indico - CERN

F.FortiDetector R&D

Detectors for reactor neutrinos (many)Inverse beta decay in water solution: coincidence of prompt and delayed signal

Liquid scintillator + PMTs

Underground for low backtround

Optionally Gd-doped scintillator

Near-far measurement to reduce sys.

32

e nep! ++ " +2e e !+ "+ #

Delayed signal, Capture on H (2.2 MeV) or Gd (8 MeV), ~30µs

Prompt signal

Detector Design Water !  Shield radioactivity and

cosmogenic neutron !  Cherekov detector for muon

RPC or Plastic scintillator " muon veto

Three-zone neutrino detector " Target: Gd-loaded LS

!  8-20 t for neutrino

"  !-catcher: normal LS !  20-30 t for energy containment

" Buffer shielding: oil !  40-90 t for shielding

( ton ) DYB DC RENO Target 20 8.3 16 !-catcher 20 18 28

Buffer 37 88 65 Total 77 114 110

Challenges:

LS: purity, Gd Loading

PMTs: large number, stability

Giant detectors

Singles spectrum

Natural radioactivity

Detector concept

Jun

Cao

, VC

I201

3