Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009]...

76
Bottom hadron spectroscopy from lattice QCD Stefan Meinel Department of Physics Jefferson Lab, October 11, 2010

Transcript of Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009]...

Page 1: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Bottom hadron spectroscopy from lattice QCD

Stefan Meinel

Department of Physics

Jefferson Lab, October 11, 2010

Page 2: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Some puzzles concerningnon-excited non-exotic heavy hadrons

Page 3: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωb: Experiment

) (GeV)b

−ΩM(

5.8 6 6.2 6.4 6.6 6.8 7

Even

ts/(

0.0

4 G

eV

)

0

2

4

6

8

10

12

14

D0 −1

1.3 fbData

Fit

(a)

[D/0, PRL 2008]:MΩb = 6.165(10)(13) GeV

[CDF, PRD 2009]:MΩb = 6.0544(68)(9) GeV

About 6 standard deviations discrepancy

Page 4: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωb: Lattice QCD

Figure from [Lewis, arXiv:1010.0889]

See also: Fermilab + staggered [Na and Gottlieb, arXiv:0812.1235]

Our results with NRQCD + DWF at low pion mass will be available soon[Meinel et al., arXiv:0909.3837]

Page 5: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Quarkonium 1S hyperfine splitting: charmonium

Charmonium: M(J/ψ)−M(ηc)

Experiment: 116.6± 1.2 MeV [PDG, JPG 2010]

perturbative QCD (potential NRQCD): ∼ 110+50−30 MeV

[Kniehl et al. PRL 2004]

Page 6: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Quarkonium 1S hyperfine splitting: bottomonium

Bottomonium: M(Υ)−M(ηb)

Experiment: 69.3± 2.8 MeV [BABAR, PRL 2008, 2009,CLEO, PRD 2009]

perturbative QCD (potential NRQCD): 39± 14 MeV [Kniehlet al., PRL 2004]

Perturbation theory should work better in bottomonium than incharmonium. What is going on?

Page 7: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

New physics in bottomonium?

Need precise lattice calculation to check perturbative QCD result.

Page 8: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

M(Υ)−M(ηb): lattice QCD

M(Υ)−M(ηb) = 54± 12 MeV using Fermilab method[Burch et al., PRD 2010]

M(Υ)−M(ηb) = 61± 14 MeV using NRQCD of order v4

[Gray et al., PRD 2005]

Dominant errors on NRQCD result: relativistic (10%) and radiative(20%)

Later in this talk: a new NRQCD calculation that largely removesthese two sources of error

Page 9: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Mass of the Ωbbb

Baryonic analogue of the Υ.

Reference MΩbbb (GeV)

Ponce, PRD 1979 14.248Hasenfratz et al., PLB 1980 14.30Bjorken 1985 14.76± 0.18Tsuge et al., MPL 1986 13.823Silvestre-Brac, FBS 1996 14.348 . . . 14.398Jia, JHEP 2006 14.37± 0.08Martynenko, PLB 2008 14.569Roberts and Pervin, IJMPA 2008 14.834Bernotas and Simonis, LJP 2009 14.276Zhang and Huang, PLB 2009 13.28± 0.10

1.5 GeV range! Later in this talk: lattice QCD result with12 MeV uncertainty

Page 10: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Heavy quarks on the lattice

Page 11: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Wilson Fermion action

SWF [Ψ,Ψ, U ] = a4

∑x∈aZ4

Ψ(x)

[γµ∇(±)

µ − 1

2a∇(+)

µ ∇(−)µ︸ ︷︷ ︸

removes doublers

+m

]Ψ(x)

with the lattice derivatives

∆+µψ(x) =

1

a[Uµ(x)ψ(x+ µ)− ψ(x)] ,

∆−µψ(x) =1

a[ψ(x)− U−µ(x)ψ(x− µ)] ,

∆±µψ(x) =1

2

[∆+µψ(x) + ∆−µψ(x)

],

where U−µ(x) = U †µ(x− aµ). Can define non-compact gauge fieldAµ through

Uµ(x) = exp [iagAµ(x)] .

Page 12: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Wilson Fermion action: dispersion relation

Energy as a function of momentum:

E(p) = m1 +p2

2m2+O(p4)

For the Wilson quark, at tree level:

m1 = m

(1− 1

2ma+

1

3m2a2 + ...

),

m2 = m

(1− 1

2ma+m2a2 + ...

),

m1

m2= 1− 2

3m2a2 + ...

This indicates large discretization errors (deviations from Lorentzinvariance) when ma not small

Page 13: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Heavy quarks on the lattice

Compton wavelength vs lattice spacing:

λ =2π

m

a

For precise lattice calculations in b physics using relativistic action,would need simultaneously

1

L mπ and mb

1

a.

Thus, a huge number (L/a) of lattice points is needed. Anotherproblem at small a: critical slowing down of topological modes[Luscher, arXiv:1009.5877].

Page 14: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Relativistic b quarks on the lattice

Work at unphysically small m and extrapolate to mb:

introduces systematic errors

Anisotropic lattices with atmb 1 [Klassen, NPB 1998]:

there may still be (asmb)p errors [Harada et al., PRD 2001]

Highly improved actions remove some of the (amb)p errors:

with HISQ [Follana et al., PRD 2007] still need a < 0.03 fm.Critical slowing down?

Fermilab method [El-Khadra et al., PRD 1997]:

difficult parameter tuning, if incomplete still large errors

Page 15: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Nonrelativistic b quarks on the lattice

Alternative approach: start with nonrelativistic effective fieldtheory in the continuum, then discretize

Lattice NRQCD [Lepage, PRD 1991, 1992]:

can not take continuum limit

Lattice HQET [Eichten, Hill, PLB 1990]:

only for heavy-light hadrons

Page 16: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

Dirac Lagrangian (Minkowski space):

L = Ψ(−m+ iγ0D0 + iγjDj)Ψ

This describes both particles and antiparticles. Projectionoperators for quark / antiquark fields are

1

2(1 + γ0),

1

2(1− γ0)

The term iγjDj couples quarks and antiquarks, as it does notcommute with γ0

→ try to remove this term via field redefinition

Page 17: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

Ψ = exp

(1

2miγjDj

)Ψ(1),

Ψ = Ψ(1) exp

(1

2miγjDj

)= Ψ(1) exp

(− 1

2miγj←Dj

)results in

L = Ψ(1)(−m+ iγ0D0)Ψ(1) +

∞∑n=1

1

mnΨ(1) O(1)n Ψ(1)

with

O(1)1 = −1

2DjD

j − ig

8[γµ, γν ]Fµν

= −1

2DjD

j − ig

8[γj , γk]Fjk︸ ︷︷ ︸

=OC(1)1

− ig2γj γ0Fj0︸ ︷︷ ︸

=OA(1)1

.

Page 18: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

Next, remove OA(1)1 by another field redefinition

Ψ(1) = exp

(1

2m2OA(1)1

)Ψ(2),

Ψ(1) = Ψ(2) exp

(1

2m2OA(1)1

)This can be continued to any order in 1/m

Page 19: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

One obtains

L = Ψ

[−m+ iγ0D0 −

1

2mDjD

j − ig

8m[γj , γk]Fjk

− g

8m2γ0

(Dadj Fj0 −

1

2[γj , γk] Dj , Fk0

)]Ψ

+O(1/m3)

All terms to the given order commute with γ0. The mass term canbe removed via

Ψ → exp(−imx0γ0

)Ψ,

Ψ → Ψ exp(imx0γ0

)

Page 20: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

Next, write

Ψ =

(ψχ

), Ψ =

(ψ†, −χ†

)and

Ek = F0k, Bj = −1

2εjklFkl

Page 21: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Foldy-Wouthuysen-Tani transformation

One obtains

L = ψ†[iD0 +

D2

2m+

g

2mσ ·B

+g

8m2

((Dad ·E) + iσ · (D×E−E×D)

)]ψ

+ χ†[iD0 −

D2

2m− g

2mσ ·B

+g

8m2

((Dad ·E) + iσ · (D×E−E×D)

)]χ

+ O(1/m3)

Note: these are the tree-level values of the couplings

Page 22: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Power counting: heavy-light hadrons

b

|D0| ∼ |D| ∼ ΛQCD

Then, [Dµ, Dν ] = igFµν implies

|g E| ∼ |g B| ∼ Λ2QCD

Page 23: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Power counting: heavy-light hadrons

b

→ leading-order Lagrangian for heavy quark:

L = ψ† iD0 ψ.

Leads to heavy-quark spin- and flavor symmetry [Shifman,Voloshin, SJNP 1988]. Correction terms are suppressed by powersof (ΛQCD/mb).

Page 24: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Lattice HQET

Continuum Lagrangian (Euclidean):

L = δm ψ†ψ︸︷︷︸dim. 3

+ ψ†D0 ψ︸ ︷︷ ︸dim. 4

Includes all operators of dimension 4 or less that are compatiblewith symmetries → renormalizable!

Lattice action [Eichten, Hill, PLB 1990]:

S =∑x

ψ†(x)[(1 + δm)ψ(x)− U †0(x− 0)ψ(x− 0)

](lattice units with a = 1)

Page 25: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Lattice HQET

Propagator on given gauge field background = Wilson line

Gψ(x, x′) = δx, x′(1 + δm)−(t−t′+1)t−t′−1∏n=0

U †0(x′ + n0).

Treat (ΛQCD/mb) corrections as insertions in correlation functions.When renormalized nonperturbatively [Maiani et al. NPB 1992],theory remains renormalizable and continuum limit is possible[ALPHA Collaboration].

Works only for heavy-light hadrons.

Page 26: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Power counting: heavy-heavy hadrons

b

b v

|D| ∼ mb v, |D0| ∼ Ekin ∼ mb v2

|g E| ∼ m2b v

3, |g B| ∼ m2b v

4

Page 27: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Power counting: heavy-heavy hadrons

b

b vLeading-order Lagrangian is

L = ψ†[iD0 +

D2

2m

]ψ + χ†

[iD0 −

D2

2m

Correction terms are suppressed by powers of v2. Forbottomonium, v2 ∼ 0.1.

Page 28: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

NRQCD

Continuum Lagrangian (Euclidean):

Lψ = ψ† (D0 +H)ψ

where H contains all terms up to desired order in v2 or(ΛQCD/mb).

Continuum evolution equation for propagator (for fixed backgroundgauge field):

Gψ(t2,x, t′,x′) = T exp

(−∫ t2

t1

(H + ig A0) dt

)Gψ(t1,x, t

′,x′)

Page 29: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Lattice NRQCD

One the lattice, evolution by one time slice is implemented as follows [HPQCD]:

Gψ(t,x, t′,x′) =

(1− δH

2

)(1− H0

2n

)nU†0 (t− 1,x)

×(

1− H0

2n

)n (1− δH

2

)Gψ(t− 1,x, t′,x′)

Here,

H0 = − 1

2mb∆(2)

and δH contains relativistic and Symanzik-improvement corrections (split inH0 and δH for historical/performance reasons).

Need n & 3/(2mb) for numerical stability.

Lattice NRQCD works for both heavy-light and heavy-heavy (andheavy-heavy-heavy!) systems. However, can not take continuum limit - needamb & 1.

Also possible: moving NRQCD [Horgan et al., PRD 2009]

Page 30: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Test of lattice NRQCD: “speed of light”

In relativistic continuum QCD, energies of hadrons satisfy

E2 −M2

p2= 1.

Lattice NRQCD energies are shifted by state-independent constant.Define

c2 ≡[E(p)− E(0) +Mkin,1]2 −M2

kin,1

p2

with

Mkin ≡p2 − [E(p)− E(0)]2

2 [E(p)− E(0)]

Page 31: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Test of lattice NRQCD: “speed of light”

Square of the speed of light, calculated for the ηb(1S) atp = n · 2π/L:

0.99

0.995

1

1.005

1.01

0 1 2 3 4 5 6 7 8 9 10 11 12

c2

n2

L= 24, a≈ 0.11 fm

L= 32, a≈ 0.08 fm

[Meinel, arXiv:1007:3966]

(with Wilson action, results for c2 would be far away from 1)

Page 32: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Bottomonium spectrum

[Meinel, arXiv:1007:3966]

Page 33: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

RBC/UKQCD gauge field ensembles

2+1 flavors of domain wall fermions, exact chiral symmetryfor L5 →∞ even at finite a, no doubling problem

better control over operator renormalization and chiralextrapolation, automatic O(a) improvement

Iwasaki gluon action - suppresses residual chiral symmetrybreaking at finite L5

1.8 fm lattices with L = 16, a ≈ 0.11 fm

2.7 fm lattices with L = 24, a ≈ 0.11 fm andL = 32, a ≈ 0.08 fm

lowest pion mass about 300 MeV

[Allton et al., PRD 2007, 2008]

Page 34: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

NRQCD action

Includes all terms of order v4 and spin-dependent O(v6) terms[Lepage et al. PRD 1992]

H0 = − 1

2m∆(2),

δH = −c1

(∆(2)

)2

8m3b

+ c2ig

8m2b

(∇ · E− E · ∇

)−c3

g

8m2b

σ ·(∇ × E− E× ∇

)− c4

g

2mbσ · B

+c5a2∆(4)

24mb− c6

a(

∆(2))2

16nm2b

−c7g

8m3b

∆(2), σ · B

−c8

3g

64m4b

∆(2), σ ·

(∇ × E− E× ∇

)−c9

ig2

8m3b

σ · (E× E).

Tree-level: ci = 1. Radiative corrections to spin-dependent couplings not yetknown!

Page 35: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings: amb-dependence

Data from L = 32 ensemble with aml = 0.004, order-v4 action:

amb = 1.75 amb = 1.87 amb = 2.05

Υ(2S)−Υ(1S) 0.2422(31) 0.2421(33) 0.2418(31)

2S − 1S 0.2456(32) 0.2454(33) 0.2448(31)

13P −Υ(1S) 0.1901(22) 0.1907(20) 0.1918(19)

13P − 1S 0.1965(22) 0.1969(20) 0.1975(19)

23P − 13P 0.1645(99) 0.1629(94) 0.1592(80)

23P −Υ(1S) 0.353(10) 0.3519(94) 0.3494(82)

23P − 1S 0.359(10) 0.3580(94) 0.3552(82)Υ2(1D)−Υ(1S) 0.3048(39) 0.3051(40) 0.3059(42)

→ Splittings nearly independent of amb

Page 36: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Kinetic mass: amb-dependence

Kinetic mass of of ηb(1S), defined as Mkin ≡p2 − [E(p)− E(0)]2

2 [E(p)− E(0)]

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10amb

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6aM

kin

L = 32, a ≈ 0.08 fm

Fit A · amb + B

Page 37: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Lattice spacing and am(phys.)b

Use Υ(2S)−Υ(1S) splitting to determine a

Determine am(phys.)b such that Mkin(ηb) agrees with

experiment

L3 × T β aml ams a−1 (GeV) am(phys.)b

163 × 32 2.13 0.01 0.04 1.766(52) 2.469(72)163 × 32 2.13 0.02 0.04 1.687(46) 2.604(75)163 × 32 2.13 0.03 0.04 1.651(33) 2.689(56)

243 × 64 2.13 0.005 0.04 1.763(27) 2.487(39)243 × 64 2.13 0.01 0.04 1.732(28) 2.522(42)243 × 64 2.13 0.02 0.04 1.676(42) 2.622(70)243 × 64 2.13 0.03 0.04 1.650(39) 2.691(66)

323 × 64 2.25 0.004 0.03 2.325(32) 1.831(25)323 × 64 2.25 0.006 0.03 2.328(45) 1.829(36)323 × 64 2.25 0.008 0.03 2.285(32) 1.864(27)

Page 38: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Chiral extrapolation

Interpolate spin splittings to am(phys.)b for each ensemble

Convert to physical units on each ensemble

Simultaneously extrapolate data from (L = 32, a ≈ 0.08 fm)and (L = 24, a ≈ 0.11 fm) to mπ = 138 MeV

E(mπ, a1) = E(0, a1) +Am2π,

E(mπ, a2) = E(0, a2) +Am2π.

Data from (L = 16, a ≈ 0.11 fm) ensemble extrapolatedindependently (different physical box size)

Page 39: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp

litti

ng

(GeV

)

Υ(3S)− Υ(1S)

L = 24, a ≈ 0.11 fmL = 32, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sp

litti

ng

(GeV

)

Υ(3S)− Υ(1S)

L = 16, a ≈ 0.11 fmL = 24, a ≈ 0.11 fmExperiment

Page 40: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.42

0.44

0.46

0.48

0.50

0.52

Sp

litti

ng

(GeV

)

13P − 1S

L = 24, a ≈ 0.11 fmL = 32, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.42

0.44

0.46

0.48

0.50

0.52

Sp

litti

ng

(GeV

)

13P − 1S

L = 16, a ≈ 0.11 fmL = 24, a ≈ 0.11 fmExperiment

Page 41: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.30

0.35

0.40

0.45

0.50

0.55

Sp

litti

ng

(GeV

)

23P − 13P

L = 24, a ≈ 0.11 fmL = 32, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.30

0.35

0.40

0.45

0.50

0.55

Sp

litti

ng

(GeV

)

23P − 13P

L = 16, a ≈ 0.11 fmL = 24, a ≈ 0.11 fmExperiment

Page 42: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Sp

litti

ng

(GeV

)

Υ2(1D)− Υ(1S)

L = 24, a ≈ 0.11 fmL = 32, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Sp

litti

ng

(GeV

)

Υ2(1D)− Υ(1S)

L = 16, a ≈ 0.11 fmL = 24, a ≈ 0.11 fmExperiment

Page 43: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radial and orbital energy splittings at mπ = 138 MeV

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6E

(G

eV)

Υ(1S)

Υ(2S)

Υ(3S)

13P–

23P–

Υ2(1D)

ExperimentL= 32, a≈ 0.08 fm

L= 24, a≈ 0.11 fm

L= 16, a≈ 0.11 fm

Page 44: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

35

40

45

50

55

60

65

70

75

Sp

litti

ng

(MeV

)

Υ(1S)− ηb(1S)

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

35

40

45

50

55

60

65

70

75

Sp

litti

ng

(MeV

)

Υ(1S)− ηb(1S)

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fmExperiment

1S hyperfine splitting

At leading order: ∝ c24, independent of c3

Page 45: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0

10

20

30

40

50

Sp

litti

ng

(MeV

) Υ(2S)− ηb(2S)

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fm

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0

10

20

30

40

50

Sp

litti

ng

(MeV

) Υ(2S)− ηb(2S)

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fm

2S hyperfine splitting

At leading order: ∝ c24, independent of c3

Page 46: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

20

25

30

35

40

45

50

55

60

Sp

litti

ng

(MeV

)

1P tensor

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

20

25

30

35

40

45

50

55

60

Sp

litti

ng

(MeV

)

1P tensor

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fmExperiment

1P tensor splitting

−2χb0(1P ) + 3χb1(1P )− χb2(1P )

At leading order: ∝ c24, independent of c3

Page 47: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

80

100

120

140

160

180

200

220

240

Sp

litti

ng

(MeV

)

1P spin-orbit

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

80

100

120

140

160

180

200

220

240

Sp

litti

ng

(MeV

)

1P spin-orbit

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fmExperiment

1P spin-orbit splitting

−2χb0(1P )− 3χb1(1P ) + 5χb2(1P )

At leading order: ∝ c3, independent of c4

Page 48: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0

2

4

6

8

10

12

Sp

litti

ng

(MeV

) 13P − hb(1P )

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fm

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0

2

4

6

8

10

12

Sp

litti

ng

(MeV

) 13P − hb(1P )

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fm

1P hyperfine splitting

13P − hb(1P )

At leading order: zero

Page 49: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings at mπ = 138 MeV

-60

-40

-20

0

20

40∆E

(M

eV)

χb0(1P)

χb1(1P)

χb2(1P)

hb(1P)

Experiment

v action, a≈ 0.08 fm

v action, a≈ 0.11 fm

v action, a≈ 0.08 fm

v action, a≈ 0.11 fm

Page 50: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings at mπ = 138 MeV

-80

-60

-40

-20

0

20∆E

(M

eV)

Υ(1S)

ηb(1S)

Υ(2S)

ηb(2S)

Experiment

v action, a≈ 0.08 fm

v action, a≈ 0.11 fm

v action, a≈ 0.08 fm

v action, a≈ 0.11 fm

Page 51: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Effect of v6 terms on spin splittings

S-wave hyperfine and P -wave spin-orbit splitting reduced byabout 20%

P -wave tensor splitting reduced by about 10%

NB: for v4 action, hyperfine and tensor splitting have similarphysics

Page 52: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Radiative corrections to spin splittings

At leading order, hyperfine and tensor splittings are expected to beproportional to c2

4 and independent of c3, so radiative correctionsshould cancel in the ratios

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)

and

Υ(1S)− ηb(1S)

1P tensor

Does this also work at order v6 ?

Page 53: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: changing c3 or c4

splitting with c3 6= 1 or c4 6= 1

splitting with all ci = 1

c3 = 0.8 c3 = 1.2 c4 = 0.8 c4 = 1.2

Υ(1S)− ηb(1S) 0.98016(18) 1.02148(19) 0.67151(53) 1.3808(12)Υ(2S)− ηb(2S) 0.983(87) 1.025(91) 0.68(10) 1.35(14)1P tensor 0.991(84) 1.008(76) 0.658(67) 1.40(11)1P spin− orbit 0.871(29) 1.129(31) 0.936(32) 1.059(39)

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)1.003(89) 1.003(89) 1.02(15) 0.98(10)

Υ(1S)− ηb(1S)

1P tensor0.989(83) 1.013(78) 1.02(10) 0.989(77)

v4 action, a ≈ 0.11 fm

Page 54: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: changing c3 or c4

splitting with c3 6= 1 or c4 6= 1

splitting with all ci = 1

c3 = 0.8 c3 = 1.2 c4 = 0.8 c4 = 1.2

Υ(1S)− ηb(1S) 0.97788(17) 1.02411(20) 0.64656(47) 1.4180(11)Υ(2S)− ηb(2S) 0.98(13) 1.03(13) 0.63(12) 1.44(19)1P tensor 0.987(71) 1.006(62) 0.641(59) 1.41(11)1P spin− orbit 0.845(28) 1.154(32) 0.920(29) 1.077(40)

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)1.00(13) 1.00(13) 0.97(19) 1.01(14)

Υ(1S)− ηb(1S)

1P tensor0.991(75) 1.018(62) 1.008(95) 1.002(74)

v6 action, a ≈ 0.11 fm

Page 55: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ratio of hyperfine splittings: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

Rat

io

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fm

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

Rat

io

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fm

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)

Page 56: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ratio of hyperfine and tensor splittings: chiral extrap.

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Rat

io

Υ(1S)− ηb(1S)

1P tensor

v4 action, a ≈ 0.11 fmv4 action, a ≈ 0.08 fmExperiment

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Rat

io

Υ(1S)− ηb(1S)

1P tensor

v6 action, a ≈ 0.11 fmv6 action, a ≈ 0.08 fmExperiment

Υ(1S)− ηb(1S)

1P tensor

Page 57: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Spin splittings: final results (v6 action, a ≈ 0.08 fm, mπ = 138 MeV)

This work Experiment

Υ(2S)− ηb(2S)

Υ(1S)− ηb(1S)0.403(52)(25) -

Υ(1S)− ηb(1S)

1P tensor1.28(12)(8) 1.467(80)

Υ(2S)− ηb(2S)

1P tensor0.497(87)(32) -

Υ(1S)− ηb(1S) 60.3(5.5)(3.8)(2.1) MeV a 69.3(2.9) MeV

Υ(2S)− ηb(2S)23.5(4.1)(1.5)(0.8) MeV a

-28.0(3.6)(1.7)(1.2) MeV b

13P − hb(1P ) 0.04(93)(20) MeV -

a Using 1P tensor splitting from experimentb Using Υ(1S)− ηb(1S) splitting from experiment

1st error: statistical/fitting, 2nd error: systematic, 3rd error: experimental

Gluon discretization errors still missing, will be included in v2

Page 58: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb

[Meinel, arXiv:1008:3154]

Page 59: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb correlator

C(Ω)jk αδ(t, t

′,x′) =∑x

εabc εfgh (Cγj)βγ (Cγk)ρσ

×Gafβσ(t,x, t′,x′)Gbgγρ(t,x, t′,x′)Gchαδ(t,x, t

′,x′)

with the NRQCD propagator

G(t,x, t′,x′) =

(Gψ(t,x, t′,x′) 0

0 0

).

For quark smearing, include(1 +

rSnS

∆(2)

)nSat source and/or sink.

Page 60: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb correlator

Large (t− t′):

C(Ω)jk → Z2

3/2 e−E3/2 (t−t′) 1

2(1 + γ0)(δjk − 13γjγk)

+ Z21/2 e

−E1/2 (t−t′) 12(1 + γ0)1

3γjγk.

Disentangle J = 32 and J = 1

2 contributions by multiplying withthe projectors

P(3/2)ij = (δij − 1

3γiγj),

P(1/2)ij = 1

3γiγj .

This gives

P(J)ij C

(Ω)jk → Z2

J e−EJ (t−t′) 1

2(1 + γ0)P(J)ik .

Page 61: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb correlator: example

Data from RBC/UKQCD ensemble with L = 32, aml = 0.004

10 15 20 25 30 35 40

t

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

C(t

)local− locallocal− smearedsmeared− localsmeared− smeared

Fit includes 7 exponentials and has tmin = 5

Page 62: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb correlator: example

Data from RBC/UKQCD ensemble with L = 32, aml = 0.004

10 15 20 25 30 35 40

t

0.48

0.49

0.50

0.51

0.52

0.53

0.54ln

[C(t

)/C

(t+

1)]

local− locallocal− smearedsmeared− localsmeared− smeared

Page 63: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Computing the Ωbbb mass

Energies extracted from fits of two-point functions contain a shiftthat is proportional to the number of heavy quarks in the hadron.

This shift cancels in the energy differences

aEΩbbb −3

2aEΥ

and

aEΩbbb −3

8(aEηb + 3aEΥ)︸ ︷︷ ︸

= 32×(bb spin average)

Page 64: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb: dependence on amb

2.3 2.4 2.5 2.6 2.7amb

0.100

0.105

0.110

0.115

0.120

Sp

litti

ng

(lat

tice

un

its)

aEΩbbb− 3

8 (aEηb + 3aEΥ)

aEΩbbb− 3

2aEΥ

1.75 1.80 1.85 1.90 1.95 2.00 2.05amb

0.072

0.074

0.076

0.078

0.080

0.082

0.084

0.086

0.088

Sp

litti

ng

(lat

tice

un

its)

aEΩbbb− 3

8 (aEηb + 3aEΥ)

aEΩbbb− 3

2aEΥ

Page 65: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb: chiral extrapolation

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Sp

litti

ng

(GeV

)

EΩbbb− 3

8 (Eηb + 3EΥ)

L = 24, a ≈ 0.11 fmL = 32, a ≈ 0.08 fm

0.0 0.1 0.2 0.3 0.4 0.5

m2π (GeV2)

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Sp

litti

ng

(GeV

)

EΩbbb− 3

8 (Eηb + 3EΥ)

L = 16, a ≈ 0.11 fmL = 24, a ≈ 0.11 fm

Page 66: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Ωbbb: chirally extrapolated/interpolated results

Ensemble type L3 × T mπ (GeV) EΩbbb − 38

(Eηb + 3EΥ) (GeV)

RBC/UKQCD coarse 163 × 32 0.138 0.214(11)RBC/UKQCD coarse 243 × 64 0.138 0.2044(44)RBC/UKQCD fine 323 × 64 0.138 0.1984(29)

MILC coarse 243 × 64 0.460 0.2063(41)RBC/UKQCD coarse 243 × 64 0.460 0.2022(22)

MILC fine 283 × 96 0.416 0.2008(24)RBC/UKQCD fine 323 × 64 0.416 0.1966(24)

MILC ensembles have more accurate gluon action (Luscher-Weisz) but userooted staggered sea quarks. Match R.M.S. pion mass.

Use the following result:

EΩbbb −3

8(Eηb + 3EΥ) = 0.198± 0.003 stat ± 0.011 syst GeV.

Page 67: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

EΩbbb− 3

8 (Eηb + 3EΥ): electrostatic correction

ECoulomb = 3(e/3)2

4πε0〈Ωbbb|

1

r|Ωbbb〉+

3

2

(e/3)2

4πε0〈Υ|1

r|Υ〉.

Expectation values from potential models (for Ωbbb from[Silvestre-Brac, FBS 1996]):

〈Υ|1r|Υ〉 = 8.1 fm−1√

〈Υ|r2|Υ〉 = 0.20 fm√〈Ωbbb|r2|Ωbbb〉 = 0.25 fm

Estimate

〈Ωbbb|r−1|Ωbbb〉 = (0.8± 0.4)〈Υ|r−1|Υ〉 = 6.5± 3.2 fm−1

This givesECoulomb = 5.1± 2.5 MeV.

Page 68: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Mass of the Ωbbb: final result

MΩbbb =

[EΩbbb −

3

8(Eηb + 3EΥ)

]LQCD

+ ECoulomb

+3

2

[MΥ

]PDG− 3

8

[ EΥ − Eηb1P tensor

]LQCD

×[1P tensor

]PDG

= 14.371± 0.004 stat ± 0.011 syst ± 0.001 exp GeV.

Page 69: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Mass of the Ωbbb: lattice QCD vs continuum models

Reference MΩbbb (GeV)

Ponce, PRD 1979 14.248Hasenfratz et al., PLB 1980 14.30Bjorken 1985 14.76± 0.18Tsuge et al., MPL 1986 13.823Silvestre-Brac, FBS 1996 14.348 . . . 14.398Jia, JHEP 2006 14.37± 0.08Martynenko, PLB 2008 14.569Roberts and Pervin, IJMPA 2008 14.834Bernotas and Simonis, LJP 2009 14.276Zhang and Huang, PLB 2009 13.28± 0.10

This work 14.371± 0.004 stat ± 0.011 syst ± 0.001 exp

Note: results from Tsuge (1985) and Zhang/Huang (2009) violatebaryon-meson mass inequality

MΩbbb ≥3

2MΥ = 14.1904 GeV

[Adler et al. PRD 1982, Nussinov PRL 1983, Richard PLB 1984]

Page 70: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Outlook

Heavy-light hadrons (with W. Detmold et al.): we arecurrently generating more DWF propagators at a ≈ 0.08 fm.Spectrum results soon. Also: axial couplings

Bottomonium: arXiv:1007:3966v2 will include study of gluondiscretization errors. Currently investigating with latticepotential model

Triply-heavy baryons: possibly include charm quarks, computeexcited states

THANK YOU!

Page 71: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Extra slides

Page 72: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Bottomonium: interpolating operators

fix gauge configurations to Coulomb gauge, use “smearing”function Γ(r), 2× 2-matrix-valued in spinor space

OΓ(p, t) =∑x, x′

χ†(x, t) Γ(x− x′) ψ(x′, t) eip·(x+x′)/2

NB: choice of smearing only affects overlap with states, not their energies

Page 73: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Bottomonium: interpolating operators

Name L S J P C RPC Γ(r)

ηb(nS) 0 0 0 − + A−+1 φnS(r)

Υ(nS) 0 1 1 − − T−−1 φnS(r) σi

hb(nP ) 1 0 1 + − T+−1 φnP (r) ri/r0

χb0(nP ) 1 1 0 + + A++1 φnP (r) (r · σ)/r0

χb1(nP ) 1 1 1 + + T++1 φnP (r) (r× σ)i/r0

χb2(nP ) 1 1 2 + + T++2 φnP (r) (riσj + rjσi)/r0

ηb(nD) 2 0 2 − + T−+2 φnD(r) rirj/r2

0

Υ2(nD) 2 1 2 − − E−− φnD(r) (rirjσk − rjrkσi)/r20

(i 6= j, k 6= j)

State φ(r)

1S exp[−|r|/r0]

2S [1− |r|/(2r0)] exp[−|r|/(2r0)]

3S[1− 2|r|/(3r0) + 2|r|2/(27r2

0)]

exp[−|r|/(3r0)]

1P exp[−|r|/(2r0)]

2P [1− |r|/(6r0)] exp[−|r|/(3r0)]

1D exp[−|r|/(3r0)]

Page 74: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Multi-exponential Bayesian fitting

matrix fits with multiple radial smearing functions (e.g. 1S,2S and 3S) at source and sink

0 5 10 15 20

time

0

5

10

15

20

25

30

corr

elat

or

〈C(Γsk,Γsc,p, t− t′)〉

≈nexp−1∑n=0

An(Γsc)A∗n(Γsk) e−En(t−t′)

Page 75: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Multi-exponential Bayesian fitting

actual fit parameters: ln(E0), A0(Γ), and for n > 0

en ≡ ln(En − En−1),

Bn(Γ) ≡ An(Γ)/A0(Γ)

Bayesian fitting [Lepage et al., NPPS 2002]:χ2 → χ2 + χ2

prior with the Gaussian prior

χ2prior =

∑i

(pi − pi)2

σ2pi

priors for low-lying states: central values from unconstrainedfit at large t, width = 10× error from fit

priors for high-lying states (for L = 24 ensemble, lattice units):

en = −1.4, σen = 1,

Bn(Γ) = 0, σBn(Γ)

= 5

Page 76: Department of Physics · Experiment: 69:3 2:8 MeV[BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 14 MeV[Kniehl et al., PRL 2004] Perturbation theory

Multi-exponential Bayesian fitting

increase nexp until fit results stabilize

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

aE

nexp

Υ(1S)

Υ(2S)

Υ(3S)χ

2 /dof

:

45.

8

2.8

3

1.8

3

0.8

6

0.8

0

0.7

9

0.7

9

0.7

9