On-chip atom interferometry - uni-tuebingen.de · On-chip atom interferometry ... Principle of an...
Embed Size (px)
Transcript of On-chip atom interferometry - uni-tuebingen.de · On-chip atom interferometry ... Principle of an...

József Fortágh, Universität TübingenOn-chip atom interferometry
On-chip atom interferometry
József FortághPhysikalisches Institut
Eberhard-Karls-Universität Tübingen

József Fortágh, Universität TübingenOn-chip atom interferometry
Separation between the condensates: d
Relative momentum of the condensates after an expansion time τ:
τdmp ≈Δ
mdhx τ≈Δ
The corresponding waveleght is the periodeof the fringe pattern:
M.R. Andrews et al., Science 275, 637-641 (1997)
Interference of two condensates

József Fortágh, Universität TübingenOn-chip atom interferometry
M.R. Andrews et al., Science 275, 637-641 (1997)
Interference of two condensates

József Fortágh, Universität TübingenOn-chip atom interferometry
Interference of condensates
1 1( , )1 1 1( , ) ( , ) −Ψ = − ⋅ i x x tx t f x x t e ϕ
Time evolutions of the amplitude fi(x-xi,t) and phase ϕi(x-xi,t) have to be taken into account !
Condensate wavefunctions:
2 2( , )2 2 2( , ) ( , ) −Ψ = − ⋅ i x x tx t f x x t e ϕ
Interference:2 2 2
1 2 1 2 1 2 1 22 cos( )Ψ + Ψ = + + −f f f f ϕ ϕ
For a BEC in the Thomas-Fermi regime: Castin & Dum PRL 77, 5316 (1996).
xδ

József Fortágh, Universität TübingenOn-chip atom interferometry
Thomas-Fermi approximation
We approximate the GP equation for repulsive interaction (a>0) in the limit
interaction energy >> kinetic energy
The density the shape of the potential (TF limit):
18
↔ =ngna
ξπ
healing lengthint. energyξ
single particle energy in the condensate
density n(x)
potential V(x)
TF radiusx
x
Dalfovo et al., Rev. Mod. Phys. 71, 463-512 (1999)

József Fortágh, Universität TübingenOn-chip atom interferometry
Expansion of condensates in the TF regime
Density profile
Phase distribution
In the harmonic trap free expansion
parabolic, with TF radius parabolic
scaling parameterdescribing the size of the condensate at any time in units of the Thomas-Fermi radius
uniform parabolic 2
0 0( ) ( )2
− = −ii x x x xαϕ
( )( )( )
= ii
i
m b ttb t
α 1( ) =imt
tαfor
large t
Castin & Dum PRL 77, 5316 (1996)

József Fortágh, Universität TübingenOn-chip atom interferometry
Interference of two condensates in the TF regime
2 2 21 2 1 2 1 2 1 22 cos( )Ψ + Ψ = + + −f f f f ϕ ϕ
1 2
1 10,= == =x x x
α α αδ
Phase difference:
fringe spacing
2 21 21 2 1 2
2 2
2
( ) ( )2 2
( )2 2
( )2
− = − − − =
= − −
= + ≈
⎛ ⎞≈ ⎜ ⎟⎝ ⎠
x x x x
x x x
x x x
m x xt
α αϕ ϕ
α α δ
αα δ δ
δ
2
fringe
πλ
substitute
1( ) =imt
tαuse
xδ

József Fortágh, Universität TübingenOn-chip atom interferometry
Force measurement
In general, the phase develops as the time integral of the Lagrangian.
01 1 ( )
⎡ ⎤= = + −⎢ ⎥
⎢ ⎥⎣ ⎦∫f
i
t
kin pott
S S dt E Eϕ
= −kin potL E E
0 ( )= + −∫f
i
t
kin pott
S S dt E E
Lagrange function:
Action:
Phase:
In case of a condensate, S0 contains the parabolic phase profile, any initial centre of mass motion, and initial phase.
Principle of an atom interferometer:
Kasevich & Chu, PRL 67, 181 (1991)

József Fortágh, Universität TübingenOn-chip atom interferometry
Spatial phase
Δ= ⋅ π πλ
( 2 mod 2 )fringe
spatial phase
x
N(x)
Δreference measurement

József Fortágh, Universität TübingenOn-chip atom interferometry
Y. Shin et al. PRA 72, 21604 (2005)
Coherence is lost after breaking the tunnel coupling due to excitation of the condensate at the splitting point.
Spatial interferometer: magnetic double well

József Fortágh, Universität TübingenOn-chip atom interferometry
T. Schumm et al., Nature Physics 1, 57 (2005)
Coherence is preserved after the splitting for ~4 oscillation periods (2ms). Dephasing for longer observation times.
Splitting a condensate in an „rf-double well”

József Fortágh, Universität TübingenOn-chip atom interferometry
Magnetic trap as an avoided crossing
z
E
Hamiltonian for a spin S=1/2 system in a magnetic field
Static magnetic field
Energy eigenvalues
1Φ
2Φ
Adiabatic limit: ω
2 2S L
1E2
= ± ω + Ω
Ω
( )( )
2
LZ 2 1dE / dt
ΩΓ = π >>
xB const.=
zB z∝
H B= −μ
BSgμ = μ
LωΩ
x y zS x y z1 e e eE B B B2 m m m
⎡ ⎤Φ = σ + σ + σ Φ⎢ ⎥⎣ ⎦

József Fortágh, Universität TübingenOn-chip atom interferometry
RF-induced adiabatic potentials
z
E
z
E
RFω
22S RF
1E ( )2
= ± ω − ω + Ω
RF1 e B2 m
Ω =
Energy eigenvalues
Static + RF magnetic field
Ω
x 0 RF RFB B B cos( t)= + ω
zB z∝
Courteille et al., J. Phys. B 39 1055 (2006)Lesanovski et al., Phys. Rev. A 73, 033619 (2006)

József Fortágh, Universität TübingenOn-chip atom interferometry
Long phase coherence due to number squeezing
Expected coherence time for coherent states: τc ~ 20 ms
Experiment: τc > 200 ms
Splitting results in number squeezed states: lower phase diffusion rate for number squeezed states.
Jo et al., Phys. Rev. Lett. 98, 030407 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
Phase diffusion rate in a condensate:
Derivative of the chemical potential
Standard deviation of the relative atom number
Coherent state:
Squeezed state:
s: squeezing parameter
Jo et al., Phys. Rev. Lett. 98, 030407 (2007)
Number squeezing

József Fortágh, Universität TübingenOn-chip atom interferometry
Adiabatic merging Sudden removal of a thin “phase membrane”
Excitation energy:
N ω
0
Phase sensitive recombination of BECs
Jo et al., PRL 98, 180401 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
The excitation due to the phase difference decays and heats the cloud:loss of condensate fraction
Phase sensitive recombination of BECs
Jo et al., PRL 98, 180401 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
Jo et al., PRL 98, 180401 (2007)
Recombination time
“slow”
“sudden”
Hold time in the trap determines the relative phase
Oscillation of the condensed fraction as a function of the relative phase and the recombination time

József Fortágh, Universität TübingenOn-chip atom interferometry
Bragg diffraction
Two photon transition between two momentum states of the ground state:
initialp1k 2k
final initial 1 2p p (k k )= + −
With k1 ≈ k2 (≅ k) and
Δ
Weidemüller, Zimmermann (Eds.) „Interaction in ultracold gases“Wiley-VCH 2003, Weinheim

József Fortágh, Universität TübingenOn-chip atom interferometry
Bragg diffraction
Weidemüller, Zimmermann (Eds.) „Interaction in ultracold gases“Wiley-VCH 2003, Weinheim
Oscillatory behavior with the two photon Rabi-frequency:
with the resonant single photon Rabi-frequencies
and Γ=1/τ

József Fortágh, Universität TübingenOn-chip atom interferometry
Output ports:1. P1 population in p=02. P2 population in p=2ħkIf there is no phase shift, the populations P1 an P2 are equal.
pulses2 2π π− π − −
First pulse split the condensate into equal populations with p=0 and p=2ħk.
Second pulse inverts the states.
Third pulse recombines the wavepackets,
This is a single particle interferometer scheme. BEC just makes the detection easier.
Kasevich & Chu, PRL 67, 181 (1991)
Bragg pulse interferometer

József Fortágh, Universität TübingenOn-chip atom interferometry
J. E. Simsarian et al., PRL 85, 2040-2043 (2000)
measuring the phase of a Bose-Einstein condensate wave function
Bragg pulse interferometer

József Fortágh, Universität TübingenOn-chip atom interferometry
Wang et al., PRL 94, 090405 (2005)
Atom Michelson interferometer based on Bragg pulses

József Fortágh, Universität TübingenOn-chip atom interferometry
Magnetic lattice
3 mm
1 μm wide gold conductors at 1 μm spacing
I= – 0.2mAI= 0.2mA
4 μm
lattice constant
100 μm
Produced by: thin film evaporation (300nm thick gold), and dry etching. Substrate: Si, covered by SiO2 isolation layer.

József Fortágh, Universität TübingenOn-chip atom interferometry
Diffraction from a lattice
1. BEC prepared 30µm below the lattice
2. BEC forced to oscillate towards the lattice3. Observation after 20ms TOF: diffraction & interference
d
Günther et al., PRL 95, 170405 (2005)Günther et al., PRL 98, 140403 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
Diffraction from the lattice
displacement d (μm)
phas
em
odul
atio
nin
dex
S 100μm
d

József Fortágh, Universität TübingenOn-chip atom interferometry
Phase modulation
Expansion in momentum eigenfunctions of the axial motion (Bessel functions of first kind):
Number of atoms in the nth diffraction order proportional to:
xy
z
Periodic potential of the meander:
Phase modulation index
Wave function directly after phase imprinting
Ref: C. Henkel, J.-Y. Courtois, and A. AspectJ. Phys. II. France 4, 1955 (1994)

József Fortágh, Universität TübingenOn-chip atom interferometry
Phase modulation
Expansion in momentum eigenfunctions of the axial motion (Bessel functions of first kind):
Number of atoms in the nth diffraction order proportional to:
xy
z
Periodic potential of the meander:
Phase modulation index
Wave function directly after phase imprinting
Ref: C. Henkel, J.-Y. Courtois, and A. AspectJ. Phys. II. France 4, 1955 (1994)

József Fortágh, Universität TübingenOn-chip atom interferometry
Diffraction and interference
without interference includes interference
20ms time of flight
S = 1.2
*( , ) ( , ) ( , ) ( , ) ( , )∞
∗
=−∞
= Ψ ⋅ Ψ − Ψ ⋅ Ψ∑ n nn
n S x S x S x S x S x
Günther et al., PRL 95, 170405 (2005)Günther et al., PRL 98, 140403 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
Reproducible phase
• New type of atom interferometer based on a single diffraction pulse
• Lattice constant defined by the fabricated conductor geometry
Günther et al., PRL 95, 170405 (2005)Günther et al., PRL 98, 140403 (2007)

József Fortágh, Universität TübingenOn-chip atom interferometry
Single atom manipulation & detection
J. Fortágh et al., Opt. Comm. 243, 45 (2004)
single atom detectionby photoionization
quantum gate
Bose-Einstein condensate
outcoupled atom
laser
antenna
output coupler lattice