Concurrent Triple Band Low Noise Amplifier Design

43
Concurrent Triple-Band Low Noise Amplifier Design Presenter: Halil İbrahim Kayıhan Supervisor: Assoc. Prof. Nil Tarım Department: Electronic and Communication Engineering JUNE 2015 1 www.hikayihan.com

Transcript of Concurrent Triple Band Low Noise Amplifier Design

Page 1: Concurrent Triple Band Low Noise Amplifier Design

1

Concurrent Triple-Band Low Noise Amplifier Design

Presenter: Halil İbrahim Kayıhan

Supervisor: Assoc. Prof. Nil Tarım

Department: Electronic and Communication Engineering

JUNE 2015

www.hikayihan.com

Page 2: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 2

Overview

Low noise amplifierCircuit topologies and biasingMatching networks and load circuits

Single band designTriple band design

Simulation results (0.18μm TSMC)S-parameter resultsNoise figure1dB compression point Third order intercept point

Page 3: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 3

Low Noise Amplifier

Low noise figure Sensitivity of the total receiver chainFriis’ formula

Enough gainS21 parameter

Good input matchingS11 parameter

LinearityP1dB and IP3

Page 4: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 4

LNA Structures

Common gateCommon source with resistive feedbackCascode with current mirrorCascode with source degeneration

Zi ZiZi

(a) (b) (c)

Page 5: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 5

Single Band Cascode LNA

Source degeneration inductor provides the real part of the input impedance.

Zi

M1

M2

Ls

𝑍 𝑖=1¿¿

Page 6: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 6

Biasing and Sizing the MOSFETs

M1

M2

Ls

Matching Network

DC

RFC

Cc

AC

50ohm

+VDD

VDD = 1.8VGate of M1 is VDD/2Equal overdrive voltages (Vgs-Vt)

and transconductance (gm)Coupling capacitorRFC

Page 7: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 7

Biasing and Sizing the MOSFETs

W/L ratio is selected considering:TransconductanceParasitic capacitances

Source inductanceGate inductance

W/L = (20 X 5μm)/(0.18μm) with 20 fingers

Page 8: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 8

Input Matching Network

Zi

M1

Ls

Lg

Cgs

Cgd

Page 9: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 9

Input Matching Network

Inductors are modeled with series resistance

Modified input impedance expression

L

=>L

rL

Page 10: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 10

Load Resonance Circuit

Load resonance circuit is a simple parallel LC circuit.

LoCo

Page 11: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 11

Element Values

CC RFC Lg Ls Lo Co M1 M2

107.5pF 100nH 23.416nH 64pH 808.6pH 4.397pFW=100µm L=0.18µm

W=100µm L=0.18µm

LoCo

M1

M2

Ls

+VDD

Lg

Zi

Page 12: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 12

Simulation Results

S11 and S21 parameters

Page 13: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 13

Simulation Results

S12 parameter

Page 14: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 14

Simulation Results

Noise figure

Page 15: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 15

Simulation Results

1dB compression point

Page 16: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 16

Simulation Results

Third order intercept point

Page 17: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 17

Simulation Results

Total results

Output port impedance is 50ohm.ZO = 53.67+j*38.3.The proper LC network for output matching

can be used for a specific impedance.

fO S11 S21 S12 S22 NF P1dB IIP3

2.4GHz -42.22dB 19.44dB -44.91dB -5.48dB 2.61dB -18.23dBm -15.91dBm

Page 18: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 18

Concurrent LNA Design

Simultaneous multiband operation without switching structures

Lower power consumptionReduced chip areaThree frequencies: 1.8GHz, 2.4GHz and

5.2GHzInput matching to 50ΩDesign for ideal and nonideal inductors and

capacitors

Page 19: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 19

Cascode Structure and Biasing

Transistor circuit and biasing are the same for concurrent LNA

Concurrent LNA is designed with ideal elements and nonideal elements separately

For ideal case W/L ratio is (50μm/0.18μm)For nonideal case W/L ratio is

(100μm/0.18μm)Some values for ideal case:

Page 20: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 20

Input Matching Network

Zi

M1

Ls

Lg

Cgs

Cgd

C2

L2

C1

L1

Page 21: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 21

Input Matching Network

Equivalents for 1.8GHz, 2.4GHz and 5.2GHz

Lga2*L2a1*L1

Lga3*L2

Lg

(a)

(b)

(c)

b1/L1

b3/L2b2/L1

Page 22: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 22

Input Matching Network

Coefficients and frequency values

a1 a2 a3 b1 b2 b3

1.8GHz 2.4GHz 5.2GHz 2.079GHz 3.533GHz

Page 23: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 23

Input Matching Network

Input impedance expressions

Page 24: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 24

Load Resonance Circuits

Conventional:

Page 25: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 25

Load Resonance Circuits

Proposed:

L18 C18

L24 C24

L52 C52

Page 26: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 26

Element Values

L1 L2 Lg Ls C1 C2

6.5664nH 19.647nH 27.766nH 213.64pH 922fF 104fF

L18 L24 L52 C18 C24 C52

100pH 100pH 100pH 78pF 43.975pF 9.35pF

Page 27: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 27

Simulation Results

All circuit diagram:

Zi

M1

Ls

Lg

Cgs

Cgd

C2

L2

C1

L1

L18 C18

L24 C24

L52 C52

M2

Vout

Vin

Page 28: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 28

Simulation Results

S11 and S21 parameters

Page 29: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 29

Simulation Results

S12 parameter

Page 30: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 30

Simulation Results

S22 parameter

Page 31: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 31

Simulation Results

Noise figure

Page 32: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 32

Simulation Results

Total results

Total results with nonideal capacitors

Frequency S11 S21 S12 NF P1dB IIP3

1.8 GHz -23.59dB 25.76dB -41.17dB 422mdB -15.80dBm -13.98dBm

2.4 GHz -27.87dB 23.27dB -41.16dB 426mdB -14.65dBm -16.40dBm

5.2 GHz -40.31dB 16.58dB -41.09dB 538mdB -11.34dBm -22.08dBm

Frequency S11 S21 S12 NF P1dB IIP3

1.8 GHz -24.17dB 25.75dB -41.18dB 421mdB -15.73dBm -13.92dBm

2.4 GHz -28.77dB 23.26dB -41.17dB 425mdB -14.60dBm -16.55dBm

5.2 GHz -40.21dB 16.57dB -41.09dB 537mdB -11.32dBm -21.95dBm

Page 33: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 33

Nonideal Case Input Matching

Zi

M1

Ls

Lg

Cgs

Cgd

C2

L2

C1

L1

rLg

rLp2rLp1

rLs

Page 34: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 34

Nonideal Case Input Matching

Parallel effective resistancesLga2*L2a1*L1

Lga3*L2

Lg

(a)

(b)

(c)

b1/L1

b3/L2b2/L1

rLp1 rLp2

rLp1 rLp2

rLp1 rLp2

Page 35: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 35

Nonideal Case Input Matching

Parallel RC and RL circuit expressions

Page 36: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 36

Nonideal Case Input Matching

Page 37: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 37

Load Resonance Circuit Values

L18 L24 L52 C18 C24 C52

1.4nH 852.9pH 870pH 4.75pF 5.51pF 1.171pF

Page 38: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 38

Simulation Results for Q=10

L1 L2 Lg Ls C1 C2

3.413nH 9.966nH 13.939nH 64.038pH 1.648pF 206.88fF

Frequency S11 S21 S12 NF P1dB IIP3

1.8 GHz -6.475dB 18.61dB -48.03dB 5.27dB -13.02dBm -20.00dBm

2.4 GHz -5.959dB 14.80dB -49.34dB 5.91dB -11.22dBm -17.36dBm

5.2 GHz -43.91dB 15.63dB -41.81dB 2.70dB -9.08dBm -17.48dBm

Page 39: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 39

Simulation Results for Q=30

L1 L2 Lg Ls C1 C2

3.309nH 9.932nH 14.08nH 114pH 1.648pF 206.88fF

Frequency S11 S21 S12 NF P1dB IIP3

1.8 GHz -15.38dB 23.21dB -43.62dB 3.04dB -13.36dBm -20.07dBm

2.4 GHz -17.48dB 20.87dB -43.46dB 2.69dB -12.61dBm -20.28dBm

5.2 GHz -17.59dB 17.12dB -40.43dB 1.34dB -9.37dBm -17.25dBm

Page 40: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 40

Simulation Results for Q=40

L1 L2 Lg Ls C1 C2

3.295nH 9.853nH 14.128nH 120pH 1.8056pF 204.72fF

Frequency S11 S21 S12 NF P1dB IIP3

1.8 GHz -20.14dB 24.16dB -42.71dB 2.45dB -14.20dBm -18.30dBm

2.4 GHz -21.95dB 21.67dB -42.68dB 2.20dB -13.13dBm -20.32dBm

5.2 GHz -16.56dB 17.31dB -40.25dB 1.14dB -9.35dBm -17.25dBm

Page 41: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 41

Total Simulation Results

Q Frequency S11 S21 S12 NF P1dB IIP3

10

1.8 GHz

-6.475dB 18.61dB -48.03dB 5.27dB -13.02dBm -20.00dBm

30 -15.38dB 23.21dB -43.62dB 3.04dB -13.36dBm -20.07dBm

40 -20.14dB 24.16dB -42.71dB 2.45dB -14.20dBm -18.30dBm

Ideal -23.59dB 25.76dB -41.17dB 422mdB -15.80dBm -13.98dBm

10

2.4 GHz

-5.959dB 14.80dB -49.34dB 5.91dB -11.22dBm -17.36dBm

30 -17.48dB 20.87dB -43.46dB 2.69dB -12.61dBm -20.28dBm

40 -21.95dB 21.67dB -42.68dB 2.20dB -13.13dBm -20.32dBm

Ideal -27.87dB 23.27dB -41.16dB 426mdB -14.65dBm -16.40dBm

10

5.2 GHz

-43.91dB 15.63dB -41.81dB 2.70dB -9.08dBm -17.48dBm

30 -17.59dB 17.12dB -40.43dB 1.34dB -9.37dBm -17.25dBm

40 -16.56dB 17.31dB -40.25dB 1.14dB -9.35dBm -17.25dBm

Ideal -40.31dB 16.58dB -41.09dB 538mdB -11.34dBm -22.08dBm

Page 42: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 42

Comparison with Other Works

Reference Frequency S11 S21 NF P1dB IIP3 Power

[1]

945 MHz -7.0dB 18.0dB 4.6dB - -12.8dBm

32.4mW2.4 GHz -15.0dB 24.0dB 4.4dB - -15.3dBm

5.25 GHz -10.0dB 23.0dB 4.4dB - -14.7dBm

[2]

2.4 GHz -10.3dB 11.8dB 3.8dB - -3.0dBm

13.5mW3.5 GHz -10.4dB 11.7dB 4.0dB - -2.1dBm

5.2 GHz -13.5dB 10.0dB 3.7dB - -0.4dBm

[3]

1.8 GHz -10.6dB 10.1dB 3.69dB -7.8dBm 1.7dBm

39.14mW2.45 GHz -10.4dB 10.8dB 4.75dB -9.8dBm 0dBm

5.25 GHz -19.9db 11.8dB 6.36dB -6.9dBm 4.5dBm

This Work

(Q=30)

1.8 GHz -15.38dB 23.21dB 3.04dB -13.36dBm -20.07dBm

21.35mW2.4 GHz -17.48dB 20.87dB 2.69dB -12.61dBm -20.28dBm

5.2 GHz -17.59dB 17.12dB 1.34dB -9.37dBm -17.25dBm

Page 43: Concurrent Triple Band Low Noise Amplifier Design

www.hikayihan.com 43

References[1] C.W. Ang, Y. Zheng, and C. H.Heng, “A multi-band CMOS low noise

amplifier for multi-standard wireless receivers,” in IEEE Int. Circuits

Syst. Symp. Dig., 2007, pp. 2802–2805.

[2] C. Y. Kao, Y. T. Chiang, and J. R. Yang, “A concurrent multi-band

low-noise amplifier for WLAN/WiMAX applications,” in IEEE Int.

Electron./Inform. Technol. Conf. Dig., 2008, pp. 514–517.

[3] Christina F. Jou , Kuo-Hua Cheng , Eing-Tsang Lu and Yang Wang, "Design Of A Fully Integrated Concurrent Triple-Band CMOS Low Noise Amplifier", IEEE, 2004