CKMfitter: Overview 4 NPhys @ Belle II

22
CKMfitter: Overview 4 NPhys @ Belle II J. Orloff LPC Clermont

Transcript of CKMfitter: Overview 4 NPhys @ Belle II

Page 1: CKMfitter: Overview 4 NPhys @ Belle II

CKMfitter:Overview 4 NPhys @ Belle II

J. Orloff LPC Clermont

Experiment by experiment

γ = (70 ± 18)∘ γ = (73 −15+13)∘

γ = (74.6 −9.2

+8.4 )∘ γ = (73.2 −7.0

+6.3 )∘

Page 2: CKMfitter: Overview 4 NPhys @ Belle II

Plan

Latest update results: SM-CKM

Latest update results: New Physics example

Structure of the code

How to add NP

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 3: CKMfitter: Overview 4 NPhys @ Belle II

γ

γ

α

α

dm∆

sm∆ & d

m∆

SLubV

ν τubV

βsin 2

(excl. at CL > 0.95)

< 0βsol. w/ cos 2

exclu

ded a

t CL >

0.9

5

α

βγ

ρ-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5excluded area has CL > 0.95

Summer 14

CKMf i t t e r

Latest global CKM fit

With new 2014 data and th. results, the global fit remains excellent

Measurement of the dominant CKM paradigm definitely entered a high precision era

arXiv:1501.05013

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 4: CKMfitter: Overview 4 NPhys @ Belle II

2014 observables and inputs2

TABLE I. Constraints used for the global fit, and the main inputs involved (more information can be found in ref. [4]). Whentwo errors are quoted, the first one is statistical, the second one systematic. The lattice inputs are our own averages obtainedas described in the text.

CKM Process Observables Theoretical inputs

|Vud| 0+ ! 0+ transitions |Vud|nucl = 0.97425± 0± 0.00022 [6] Nuclear matrix elements

|Vus| K ! ⇡`⌫ |Vus|SLfK!⇡+

(0) = 0.21664± 0.00048 [7] fK!⇡+

(0) = 0.9641± 0.0015± 0.045

K ! e⌫e B(K ! e⌫e) = (1.581± 0.008) · 10�5 [7] fK = 155.2± 0.2± 0.6 MeV

K ! µ⌫µ B(K ! µ⌫µ) = 0.6355± 0.0011 [7]

⌧ ! K⌫⌧ B(⌧ ! K⌫⌧ ) = (0.6955± 0.0096) · 10�2 [7]

|Vus||Vud|

K ! µ⌫/⇡ ! µ⌫B(K ! µ⌫µ)B(⇡ ! µ⌫µ)

= 1.3365± 0.0032 [7] fK/f⇡ = 1.1942± 0.0009± 0.0030

⌧ ! K⌫/⌧ ! ⇡⌫B(⌧ ! K⌫⌧ )B(⌧ ! ⇡⌫⌧ )

= (6.43± 0.09) · 10�2 [7]

|Vcd| ⌫N |Vcd|⌫N = 0.230± 0.011 [7]

D ! µ⌫ B(D ! µ⌫) = (3.74± 0.17) · 10�4 [9] fDs/fD = 1.201± 0.004± 0.010

D ! ⇡`⌫ |Vcd|fD!⇡+

(0) = 0.148± 0.004 [8] fD!⇡+

(0) = 0.666± 0.020± 0.048

|Vcs| W ! cs̄ |Vcs|W!cs̄ = 0.94+0.32�0.26 ± 0.13 [7]

Ds ! ⌧⌫ B(Ds ! ⌧⌫) = (5.55± 0.24) · 10�2 [9] fDs = 245.3± 0.5± 4.5 MeV

Ds ! µ⌫ B(Ds ! µ⌫µ) = (5.57± 0.24) · 10�3 [9]

D ! K`⌫ |Vcs|fD!K+

(0) = 0.712± 0.007 [8, 10] fD!K+

(0) = 0.747± 0.011± 0.034

|Vub| semileptonic decays |Vub|SL = (3.70± 0.12± 0.26) · 10�3 [9] form factors, shape functions

B ! ⌧⌫ B(B ! ⌧⌫) = (1.08± 0.21) · 10�4 [9, 11] fBs/fB = 1.205± 0.004± 0.007

|Vcb| semileptonic decays |Vcb|SL = (41.00± 0.33± 0.74) · 10�3 [9] form factors, OPE matrix elements

↵ B ! ⇡⇡, ⇢⇡, ⇢⇢ branching ratios, CP asymmetries [9] isospin symmetry

� B ! (cc̄)K sin(2�)[cc̄] = 0.682± 0.019 [9]

� B ! D(⇤)K(⇤) inputs for the 3 methods [9] GGSZ, GLW, ADS methods

�s Bs ! J/ (KK,⇡⇡) �s = �0.015± 0.035 [9]

V ⇤tqVtq0 �md �md = 0.510± 0.003 ps�1 [9] B̂Bs/B̂Bd = 1.023± 0.013± 0.014

�ms �ms = 17.757± 0.021 ps�1 [9] B̂Bs = 1.320± 0.017± 0.030

Bs ! µµ B(Bs ! µµ) = (2.8+0.7�0.6) · 10�9 [12] fBs = 225.6± 1.1± 5.4 MeV

V ⇤tdVts ✏K |✏K | = (2.228± 0.011) · 10�3 [7] B̂K = 0.7615± 0.0027± 0.0137

V ⇤cdVcs ✏ = 0.940± 0.013± 0.023

II. INPUTS FOR THE SM GLOBAL FIT

A. General discussion

Not all the observables in flavour physics can be usedas inputs to constrain the CKM matrix, due to limita-tions on our experimental and/or theoretical knowledgeon these quantities. The list of inputs to the global fit isindicated in Table I: they fulfil the double requirementof a satisfying control of the attached theoretical uncer-tainties and a good experimental accuracy of their mea-surements. In addition, we only take as inputs the quan-tities that provide constraints on the CKM parametersA,�, ⇢̄, ⌘̄. We will see below that not all parameters areequally relevant for the global fit.

A major source of uncertainties in flavour analysesarises from matrix elements that encode the e↵ects of thestrong interaction in the non-perturbative regime, corre-sponding here to decay constants, form factors and bagparameters. We rely mainly on lattice QCD simulationsfor the determination of these quantities, as they provide

well-established methods to compute these observableswith a controlled accuracy. Some of the uncertaintieshave a clear statistical interpretation. Lattice simula-tions evaluate Green functions in an Euclidean metricexpressed as path integrals using Monte Carlo methods,and their accuracy depends on the size of the sampleof gauge configurations used for the computation. Theremaining uncertainties are systematic: they are nowdominant in most cases and they depend on the com-putational strategies chosen by competing lattice collab-orations: discretisation methods used to describe gaugefields and fermions on a lattice, interpolating fields, pa-rameters of the simulations, such as the size of the (finite)volumes and lattice spacings, the masses of the quarksthat can be simulated, and the number of dynamicalflavours included as sea quarks. These simulations mustoften be extrapolated to obtain physical quantities, rely-ing in particular on e↵ective theories such as chiral per-turbation theory and heavy-quark e↵ective theory whichinduce further systematics.

The combination of lattice values is a critical point

Page 5: CKMfitter: Overview 4 NPhys @ Belle II

)σPull (

|ud

|V 0.00)

e3B(K 0.00

)e2

B(K 1.43)

2µB(K 0.29

)K2τB( 2.31not lattice|

cd|V 0.42

not lattice|cs|V 0.00

)νlπ →B(D 0.00)νKl→B(D 0.00)ν τ→sB(D 1.51)νµ→sB(D 1.06

)νµ→B(D 0.56semilep|

cb|V 0.00

semilep|

ub|V 0.00

)ντ→B(B 1.46dm∆ 1.44sm∆ 1.36

Kε 0.00βsin 2 1.74

α 1.03γ 0.89

sφ 0.62µµ→sB 1.02

0 0.5 1 1.5 2 2.5 3 3.5

1-Dimensional Pulls

Comparing χ²min without and with a given quantity gives a measure the « tension » it brings in the fit

Nothing really sticks out

Beware correlations…

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 6: CKMfitter: Overview 4 NPhys @ Belle II

γ

γ

α

α

dm∆

sm∆ & d

m∆

SL,exclubV

ν τubV

βsin 2

(excl. at CL > 0.95)

< 0βsol. w/ cos 2

exclu

ded a

t CL >

0.9

5

α

βγ

ρ-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5excluded area has CL > 0.95

Summer 14

CKMf i t t e r

Latest global fit (Vub excl.)

Previous fit uses a particular average of exclusive and inclusive decays

Using only exclusive semi-leptonic B decays to fix Vub (and Vub) changes the εK contour,

But not the best fit point

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 7: CKMfitter: Overview 4 NPhys @ Belle II

γ

γ

α

α

dm∆

sm∆ & d

m∆

SL,inclubV

ν τubV

βsin 2

(excl. at CL > 0.95)

< 0βsol. w/ cos 2

exclu

ded a

t CL >

0.9

5

α

βγ

ρ-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5excluded area has CL > 0.95

Summer 14

CKMf i t t e r

Latest global fit (Vub incl.)

Same when moving to inclusive SL decays, more in agreement with B→τν

Notice the Δms ring stops closing

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 8: CKMfitter: Overview 4 NPhys @ Belle II

βsin 20.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

)ντ

→B

R(B

0.00

0.05

0.10

0.15

0.20-3

10×

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

Summer 14

CKMf i t t e r

Correlations: Br(B→τν)There are ~1.5σ pulls in sin2β and Br(B→τν)

These are in fact very much correlated: the fit determines very precisely a combination of both (much better than the good exp. precision on β)

Lesson: global fit of both is essential to reveal a possible discrepancy

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 9: CKMfitter: Overview 4 NPhys @ Belle II

NLONNLO

]-9) [10µµ→s

Br(B0 1 2 3 4 5 6

]-1

1)

[10

µµ

→d

Br(

B

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

Summer 14

CKMf i t t e r

Correlations: Br(Bx→μμ)

Same is true for Bx→μμ

Experimental progresses (Belle II) will be welcome!

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 10: CKMfitter: Overview 4 NPhys @ Belle II

New Physics Example: ΔF=2

Assume generic and independent contributions to Bs and Bd mixing (as well as K0: left alone)

Observables are

• �mq $ |�q|

• aqSL $ �q

• ��q $ ��q

�q = |�q|ei��q = (1 + hqe

2i�q )

Mq12 = (Mq

12)SM ⇥�q

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 11: CKMfitter: Overview 4 NPhys @ Belle II

)s(BSL

) & ad

(BSL & aSLA

expαsm∆ & dm∆

)dβ+2d ∆φsin(

SM point

d∆Re -2 -1 0 1 2 3

d∆

Im

-2

-1

0

1

2excluded area has CL > 0.68

Summer14

CKMf i t t e r

SL mixing - with Ad NP in B

NP in Bd mixing

Global NP fit view in Bd

parameter space

SM (Δ=0) is not excluded, and nearly as good as best fit

NP contributions up to 40% are not excluded either!

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 12: CKMfitter: Overview 4 NPhys @ Belle II

)s(BSL

) & ad

(BSLa

expαsm∆ & dm∆

)dβ+2d ∆φsin(

SM point

d∆Re -2 -1 0 1 2 3

d∆

Im

-2

-1

0

1

2excluded area has CL > 0.68

Summer14

CKMf i t t e r

SL mixing - w/o Ad NP in B

NP in Bd mixing (w/o ASL)

ASL (combination of adSL

and asSL) measurement at

Tevatron is in tension with others

Discarding it doesn’t change the conclusions

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 13: CKMfitter: Overview 4 NPhys @ Belle II

)s(BSL

) & ad

(BSL & aSLA

)0

fψ(J/sτ) & -K+(Ksτ & FSsτ & sΓ ∆

sm∆ & dm∆

sβ-2s ∆φ

SM point

s∆Re -2 -1 0 1 2 3

s∆

Im

-2

-1

0

1

2excluded area has CL > 0.68

Summer14

CKMf i t t e r

SL mixing - with As NP in B

NP in Bs mixing

Global NP fit view in Bs

parameter space

SM (Δ=0) is not excluded either, although outside of the ASL contour

NP contributions up to 30% are also allowed

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 14: CKMfitter: Overview 4 NPhys @ Belle II

)s(BSL

) & ad

(BSLa

)0

fψ(J/sτ) & -K+(Ksτ & FSsτ & sΓ ∆

sm∆ & dm∆

sβ-2s ∆φ

SM point

s∆Re -2 -1 0 1 2 3

s∆

Im

-2

-1

0

1

2excluded area has CL > 0.68

Summer14

CKMf i t t e r

SL mixing - w/o As NP in B

NP in Bs mixing (w/o ASL)

Dropping ASL releases the tension

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 15: CKMfitter: Overview 4 NPhys @ Belle II

NP in Bx mixing : current

Deviations up to 30-40% (at 2 σ) are currently possible

dh0.0 0.1 0.2 0.3 0.4 0.5

sh

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

excluded area has CL > 0.95

2013

CKMf i t t e r

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 16: CKMfitter: Overview 4 NPhys @ Belle II

dh0.0 0.1 0.2 0.3 0.4 0.5

sh

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

excluded area has CL > 0.95

Stage I

CKMf i t t e r

NP in Bx mixing : future 1

Stage 1 projection: LHCb 7fb-1 + Belle II 7ab-1 (~2018?)Excluding 20% deviations

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 17: CKMfitter: Overview 4 NPhys @ Belle II

dh0.0 0.1 0.2 0.3 0.4 0.5

sh

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

excluded area has CL > 0.95

Stage II

CKMf i t t e r

NP in Bx mixing : future 2

Stage 2 projection: LHCb 50 fb-1 + Belle II 50ab-1 (~2023?)Excluding 8% deviations

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 18: CKMfitter: Overview 4 NPhys @ Belle II

NP in Bx mixing : future 2

Stage 2 projection: LHCb 50 fb-1 + Belle II 50ab-1 (~2023?)Measuring a 15% deviation to SM

dh0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0p-value

excluded area has CL > 0.95

Stage II (NP)

CKMf i t t e r

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 19: CKMfitter: Overview 4 NPhys @ Belle II

CKMfitter code is designed to allow for a frequentist approach where theoretical parameters have initially NO probability distribution

Restrictions only come from experimental input (with statistical distributions)

RFit : Theoretical uncertainties are treated as nuisance parameters bounded (but undistributed) in a range

Uncertainties

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 20: CKMfitter: Overview 4 NPhys @ Belle II

Core libraries: (~5000 Mathematica lines)

Perform minimisation, and scans of p-values

Taking symbolic partial derivatives ∂Oᵢ / ∂pⱼ is a major speedup (x100?)

Automatically generate and compile fortran code for speed

« Theories » packages: (~15000 Mathematica lines)

each define analytically a set of observables Oᵢ as functions of input parameters: Oᵢ(pⱼ) ; e.g. Br(Bs→μμ) is in « DiLeptonicDecays.m »

Can coexist in different versions (eg. NLO or NNLO), and with different inputs (e.g. SM, NP, MFV for BBbarKKbarmixing.m)

Analysis Datacards: define

free fit parameters (with initial search range)

experimental results (incl. statistical and systematic uncertainties)

theoretical uncertainties

Structure of the code

J. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 21: CKMfitter: Overview 4 NPhys @ Belle II

How to add a NP model?Provide a Mathematica theory package (or alternative version) defining affected observables

Code is not public, but the group is flexible (not every member signs every paper) and open to project-oriented partnerships (e.g. NP in mixing)

Models benefitting most of the refined statistical analysis are over-constrained, with correlations between observables:

2HDM type II

limited Wilson coefficients sets (C7, C9, C10, …)

CMFVJ. Orloff, NP@BII Karlsruhe, Feb.25 2015

Page 22: CKMfitter: Overview 4 NPhys @ Belle II

CKMfitter group & page:

Jérôme Charles Olivier Deschamps Sébastien Descotes-Genon Heiko Lacker Evan Machefer Andreas Menzel Stéphane Monteil Valentin Niess José Ocariz Jean Orloff Alejandro Perez Wenbin Qian Vincent Tisserand Karim Trabelsi Philip Urquijo Luiz Vale Silva

http://ckmfitter.in2p3.fr/

Coming soon: web interface CKMlive

J. Orloff, NP@BII Karlsruhe, Feb.25 2015