Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of...

15
1 Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H 2 + Hamiltonian ab b a e b b a a nn en e n R r r M M V V T T H 1 1 1 2 1 2 1 2 1 ˆ ˆ ˆ 2 2 2 + = + + + = Born-Oppenheimer approximation: ) ( ) : ( ) , ( R R r R r ϕ ψ = Ψ Substituting to Ψ = Ψ E H ˆ and ignore the action of n T ˆ on ) : ( R r ψ , we have ) : ( ) ( ) : ( ] ˆ [ R r R R r ψ ψ e en e E V T = + (electronic) ) ( ) ( )] ( ˆ [ R R R ϕ ϕ E E V T e nn n = + + (nuclear) Because of the small mass of an electron, it can respond instantaneously to change of nuclear coordinates. In B-O approximation, electronic Schrödinger equation is solved at a fixed nuclear framework. The nuclei Schrödinger equation is solved with potential energy surface ( e nn E V V + = ).

Transcript of Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of...

Page 1: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

1

Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2

+ Hamiltonian

abbaeb

ba

a

nnenen

RrrMM

VVTTH111

21

21

21

ˆˆˆ

222 +−−∇−∇−∇−=

+++=

Born-Oppenheimer approximation: )():(),( RRrRr ϕψ=Ψ Substituting to Ψ=Ψ EH and ignore the action of nT on

):( Rrψ , we have ):()():(]ˆ[ RrRRr ψψ eene EVT =+ (electronic) )()()](ˆ[ RRR ϕϕ EEVT ennn =++ (nuclear) Because of the small mass of an electron, it can respond instantaneously to change of nuclear coordinates. In B-O approximation, electronic Schrödinger equation is solved at a fixed nuclear framework. The nuclei Schrödinger equation is solved with potential energy surface ( enn EVV += ).

Page 2: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

2

LCAO-MO: ∑=Ψ

n

AOn

MO c ψ

H2

+

bbaa scsc 11 +=Ψ Schrödinger Eq. for enee VTH += ˆˆ Ψ=Ψ EHe

ˆ Multiplying as1 on the left and integrate: babababaaa EcSEccHcH +=+ similarly with bs1 , baabbbbaab EccEScHcH +=+ in which the Hamiltonian and overlap matrix elements are aeaaa sHsH 1ˆ1= bebbb sHsH 1ˆ1= babeaab HsHsH == 1ˆ1 babaab SssS == 11

Page 3: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

3

Matrix form:

0=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−

−−

b

a

bbabab

ababaa

cc

EHESHESHEH

Solution of coupled linear equations:

0=−−

−−EHESH

ESHEH

bbabab

ababaa

The same equations can be obtained by variational principle. For homonuclear diatoms, α== bbaa HH , β=abH , SSab = 0)()( 22 =−−− ESE βα Solution:

S

E±±

=± 1βα

and

)1(2

1S

cc ba +== ++

)1(2

1S

cc ba −=−= −−

+Ψ , −Ψ have 0 and 1 node, respectively.

Page 4: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

4

Bonding and antibonding MOs ]11[ ba ssN −=Ψ −− as1 bs1 ]11[ ba ssN +=Ψ ++ Bonding MO has extra e-density between nuclei (constructive interference). It lowers the energies of the AOs. )]11(211[ 222

baba ssssNP ++= ++ Antibonding MO has node (destructive interference). It raises the energies of AOs. )]11(211[ 222

baba ssssNP −+= −−

Page 5: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

5

Let’s take a closer look at the energy:

( ) ( )baba

ba ssRrr

ssN

dHHE

111112111

ˆˆ

22

*

+⎟⎟⎠

⎞⎜⎜⎝

⎛+−−∇−+=

∫ ΨΨ=ΨΨ=

+

+++++ τ

Let’s define the atomic energy first

asaa

sEsr

11121

12 =⎟⎟

⎞⎜⎜⎝

⎛−∇−

bsbb

sEsr

11121

12 =⎟⎟

⎞⎜⎜⎝

⎛−∇−

we have

( )

( )

]22)1(2[

]11111111

11111111

)1(2[

]11111

11111[

12

12

1

12

KJSEN

sRr

ssRr

s

sRr

ssRr

s

SEN

sRr

Ess

sRr

EssNE

s

ba

bba

a

ab

bab

a

s

ba

sba

ab

sba

+++=

⎟⎟⎠

⎞⎜⎜⎝

⎛+−+⎟⎟

⎞⎜⎜⎝

⎛+−+

⎟⎟⎠

⎞⎜⎜⎝

⎛+−+⎟⎟

⎞⎜⎜⎝

⎛+−+

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+−++

⎟⎟⎠

⎞⎜⎜⎝

⎛+−+=

+

+

++

Page 6: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

6

The Coulumb integral represents electrostatic interaction between the A electron and B nucleus (always >0):

R

dr

ssdsRr

sJb

aaa

ba

1111111 +∫−=⎟⎟⎠

⎞⎜⎜⎝

⎛+−∫= ττ

and the exchange integral stems from the LCAO assumption

RSd

rssds

RrsK

b

aba

bb +∫−=⎟⎟

⎞⎜⎜⎝

⎛+−∫= ττ 111111

and is a quantum mechanical effect. K is usually negative and responsible for the binding energy. Thus, chemical bond is a quantum mechanical phenomenon. Substituting the normalization factor, we reach

SKJE

SKJSEE s

s

++

+=+

+++=+ 1)1(2

22)1(21

1

Comparing with the energy expression earlier, it is easy to see JE s += 1α , and KSE s += 1β The relative energy becomes:

SKJEEE s +

+=−=Δ ++ 11

Page 7: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

7

For the antibonding orbital

SKJE

−−

=Δ − 1

The integrals can be obtained analytically for H2

+: ( )3/1 2RReS R ++= −

⎟⎠⎞

⎜⎝⎛ += −

ReJ R 112

( )ReRSK R +−= − 1

Potential energy curve: Labeling MOs by λ (projection of angular momentum on internuclear distance): || m=λ 0, 1, 2, … Symbol: σ, π, δ, … For 1s AOs, 0=λ ; and we have σ MOs.

Page 8: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

8

For homonuclear diatoms:, the MOs can be further labels by parity (inversion symmetry). +Ψ −Ψ parity: gerade ungerade gσ uσ MO energy level diagram: 2nd period homonuclear diatoms: Core electrons do not participate in bonding. 3 uσ 2 uσ 1 gπ 2s 2s 2p 2p 2 gσ 1 uπ 3 gσ Electronic configuration determined by Aufbau principle:

H2+, 1 1

gσ H

2, 1

2gσ , spin paired (Pauli principle),

Bond order = (# bonding e- - antibonding e-)/2 = (2-0)/2 = 1, single bond.

Page 9: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

9

He2, 1 2

gσ 1 2uσ , unstable, energy gained in gσ offset by energy

loss in uσ , bond order = 0 Li2, 2 2

gσ , single bond.

HOMO: highest occupied MO (2 gσ )

LUMO: lowest unoccupied MO (2 uσ ). These orbitals are called frontier orbitals and largely responsible for chemical and spectroscopic properties of the molecule. N

2, 2 2

gσ 2 2uσ 1 4

uπ 3 2gσ ,

Extremely stable because of 6 bonding e- (triple bond). Because of interaction with 2 uσ , 3 gσ higher than 1 uπ . O

2, 2 2

gσ 2 2uσ 3 2

gσ 1 4uπ 1 2

gπ , two top electrons unpaired (Hund’s rule), paramagnetic. Term symbol of a molecular state: reflection

parityS Λ+12

S: total spin Λ: total orbital angular momentum on the molecular axis Σ, Π, Δ,... for Λ= 0, 1, 2, ...

Determined by occupied MOs

Page 10: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

10

Overall parity:

g × g = g, u × u =g, u × g = u

Reflection symmetry:

+ × - = -, + × + = +, - × - = +

+/-: behavior of MO under the reflection of a plane containing the nuclei. gσ uσ uπ gπ reflection + + - - H

2

+, 1 1gσ , Λ = 0 (Σ), S = 1/2, 2S+1 = 2 (doublet), parity = g,

reflection = +, so term symbol: +Σg2

H

2, 1

2gσ , Λ = 0 (Σ), S = 0, 2S+1 = 1 (singlet), parity = g (g × g),

reflection = + (+×+), so: +Σg1

II. Heteronuclear diatoms

0=−−

−−EHESH

ESHEH

bbabab

ababaa

Assuming:

aaaH α= , bbbH α= , β=abH , 0=abS

Page 11: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

11

Solution can be expressed in terms of ζ: tanaE α β ζ+ = + tanbE α β ζ− = − where

2

tan 2b a

βζ

α α=

ΔE of two AOs ( b aα α− ) determines the strength of MO. Example: H-F bond

Energies (α) of AOs: H1s: -13.6 eV, F2p: -18.6 eV Assume β = -1.0 eV, ζ = 10.9o,

E+ = -18.6 - 1.0 tan(10.9o) = -18.8 eV

E- = -13.6 + 1.0 tan(10.9o) = -13.4 eV

Page 12: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

12

III. Walsh diagram Let’s look at H2A system.

)A(2)A(2)A(2)A(2

)H(1)H(1

6543

21

zyx

baMO

pcpcpcscscsc

+++++=Ψ

At linear geometry At bent geometry Walsh diagram Explains why BeH2 is linear and H2O is bent.

Page 13: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

13

IV. Hückel theory

π system in conjugated molecules (alternating single and double bonds), such as CH2=CH-CH=CH2, benzene, etc. Hückel approximation: i. Only π MOs are treated and molecular frame is fixed by σ bonds.

ii. Coulomb integrals (α) are set equal.

iii. Overlap integrals (S) are set to zero.

iv. Resonance integrals (β) are equal for neighbors, but zero for non-neighbors. Ethene:

0=−

−E

Eαβ

βα

Orbital energies

E = α ± β Total energy (π electrons) is

E = 2(α + β) = 2α + 2β (no extra stabilization)

Page 14: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

14

Butadiene: CH2=CH-CH=CH2

0

-00-0

0-00-

=

EE

EE

αββαβ

βαββα

Energies are

E = α ± 1.62β, α ± 0.62β

Total energy:

E = 2(α + 1.62β) + 2(α + 0.62β) = 4α + 4.48β Eπ = 4α + 4β

Delocalization energy: extra stabilization energy due to delocalization (E - Eπ=0.48β). Benzene: α - E β 0 0 0 β β α - E β 0 0 0 0 β α - E β 0 0 0 0 β α - E β 0 0 0 0 β α - E β β 0 0 0 β α - E

Page 15: Chapter 6, Introduction of molecular orbital theoryhguo/501c6.pdf · Chapter 6, Introduction of molecular orbital theory I. Homonuclear diatoms H2 + Hamiltonian a b ab b e b a a n

15

Orbital energies E = α ± 2β, α ± β, α ± β Total energy E = 2(α + 2β) + 4(α + β) = 6α + 8β Delocalization energy is 2β (app. -150 kJ/mol), aromatic stability. What about C6H6

+? E = 2(α + 2β) + 3(α + β) = 5α + 7β Delocalization energy is 2β.