Benedikt Kloss for the BESIII Collaboration Institute of...

31
Benedikt Kloss for the BESIII Collaboration Institute of Nuclear Physics – Mainz University Twelfth Conference on the Intersections of Particle and Nuclear Physics May 2015,Vail, Colorado

Transcript of Benedikt Kloss for the BESIII Collaboration Institute of...

Benedikt Kloss for the BESIII Collaboration

Institute of Nuclear Physics – Mainz University

Twelfth Conference on the Intersections of Particle and Nuclear Physics May 2015, Vail, Colorado

Benedikt Kloss - Universität Mainz 2

A new U(1) gauge boson γ‘ („dark photon“) might be the connection between the standard model and a dark sector:

dark sector kinetic mixing standard model

Benedikt Kloss - Universität Mainz 3

Existing exclusion limits on the dark photon (γ’) mass and mixing parameter (ε):

Dark photon coupling strength to SM matter:

Mixing parameter:

ε 2 =α 'α

α '

GOAL: make a contribution at

4 Benedikt Kloss - University of Mainz

5 Benedikt Kloss - University of Mainz

IHEP, Beijing

6

BEPCII Collider:

•  located in Beijing, China •  symmetric e+e- collider •  2 GeV < ECMS < 4.6 GeV •  data taken at : 2.9 fb-1

s = 3.77 GeV

Benedikt Kloss - University of Mainz

7

Main Drift Chamber

CsI Crystal Calorimeter

1T superconducting solenoid magnet

Time-Of-Flight System

Muon Chamber

Benedikt Kloss - University of Mainz (Graphic produced by Matthias Ulrich, Gießen)

8 Benedikt Kloss - University of Mainz

Benedikt Kloss - Universität Mainz 9

•  photon emitted in the initial state •  CMS energy lowered by the energy of the emitted photon ⇒  measurements at different energies possible

fixed Ecms = 3.77 GeV

new energy

E [GeV]

10 Benedikt Kloss - Universität Mainz

EMC EMC

tagged: photon hits EMC

untagged: photon leaves the detector

Two different analysis types: •  tagged: photon is detected in the Electromagnetic Calorimeter •  untagged: photon leaves the detector (most probable case)

11 Benedikt Kloss - Universität Mainz

Two different analysis types: •  tagged: photon is detected in the Electromagnetic Calorimeter •  untagged: photon leaves the detector (most probable case)

[rad]γθ0 0.5 1 1.5 2 2.5 3

even

ts /

10 m

rad

210

310

410

510

TAGGED&

UNTAGGED

&

UNTAGGED

&

boarders&of&EMC&

Benedikt Kloss - University of Mainz 12

Idea: Search for the ISR processes

e+e− →γ ISR ʹ′ γ →γ ISRµ+µ−

e+e− →γ ISR ʹ′ γ →γ ISRe+e−

and

Use untagged ISR events and 2.9 fb-1 data, taken at 3.77 GeV.

at

Benedikt Kloss - University of Mainz 13

Idea: Search for the ISR processes

e+e− →γ ISR ʹ′ γ →γ ISRµ+µ−

e+e− →γ ISR ʹ′ γ →γ ISRe+e−

and

Irreducible background:

e+e− →γ ISRγ*→γ ISRµ+µ−

e+e− →γ ISRγ*→γ ISRe+e−

QED process, same signature in

detector!

Dark photon signal would appear as peak on the QED background. ⇒  Peak search!

14 Benedikt Kloss - University of Mainz

Benedikt Kloss - University of Mainz 15

distance to interaction point Rxy < 1.0 cm Rz < 10.0 cm

acceptance of charged tracks 0.4 rad < θ< π – 0.4 rad

to supress background PID to select µ or e

# charged tracks = 2

total charge = 0

# photons = 0 (untagged analysis)

missing photon angle < 0.1 rad or > π – 0.1 rad

1C kinematic fit χ21C < 20

e+e− →µ+µ−γ ISREvent selection: and

e+e− →e+e−γ ISR

Benedikt Kloss - University of Mainz 16

MC simulated with PHOKHARA Eur.Phys.J. C24, 71-82 (2002) Phys. Rev. D77, 114005 (2008)

]2 [GeV/cµ2m1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

even

ts /

10 M

eV

410

MCγ-µ+µ MCγ-π+π

datada

ta /

MC

0.90.920.940.960.98

11.021.041.061.08

1.1

]2 [GeV/cµ2m1.6 1.8 2 2.2 2.4

ev

en

ts /

10

Me

V

2800

3000

3200

3400

3600

da

ta /

MC

0.90.920.940.960.98

11.021.041.061.08

1.1

]2 [GeV/cµ2m1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

even

ts /

10 M

eV

410

MCγ-µ+µ MCγ-π+π

data

data

/ M

C

0.90.920.940.960.98

11.021.041.061.08

1.1

QED process - irreducible background

Data-MC efficiency corrections applied on MC.

See talk on Wednesday:

“Measurement of the π+π- cross section at BESIII”

(PPHI, 16:40)

PRELIMINARY

J/ψ

Benedikt Kloss - University of Mainz 17

]2 [GeV/c2em1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

even

ts /

10 M

eV

410

]2 [GeV/c2em1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

even

ts /

10 M

eV410

MCγ-e+ e data

data

/ M

C

0.90.920.940.960.98

11.021.041.061.08

1.1

MC simulated with BABAYAGA 3.5

QED process - irreducible background

Nucl. Phys. B758, 227-253 (2006)

PRELIMINARY MC not corrected

for data-MC differences.

J/ψ

Benedikt Kloss - University of Mainz 18

/ ndf 2χ 196 / 145 0a 1.288e+02± 1.638e+05 1a 9.571e+01± -3.663e+05 2a 4.362e+01± 3.155e+05 3a 1.83e+01± -1.16e+05 4a 5.177e+00± 1.687e+04

[GeV]2em1.6 1.8 2 2.2 2.4 2.6 2.8 3

even

ts /

10 M

eV

20

40

60

80

100

120

140

310×

/ ndf 2χ 196 / 145 0a 1.288e+02± 1.638e+05 1a 9.571e+01± -3.663e+05 2a 4.362e+01± 3.155e+05 3a 1.83e+01± -1.16e+05 4a 5.177e+00± 1.687e+04

Fit of the continouus mass spectrum in data with a polynomial and look for

a peak in data:

fit to data

p(x) = a0 + a1x + a2x2 + a3x

3 + a4x4

PRELIMINARY

To get rid of the MC prediction:

Spare the region around J/ψ.

Benedikt Kloss - University of Mainz 19

/ ndf 2χ 196 / 145 0a 1.288e+02± 1.638e+05 1a 9.571e+01± -3.663e+05 2a 4.362e+01± 3.155e+05 3a 1.83e+01± -1.16e+05 4a 5.177e+00± 1.687e+04

[GeV]2em1.6 1.8 2 2.2 2.4 2.6 2.8 3

even

ts /

10 M

eV

20

40

60

80

100

120

140

310×

/ ndf 2χ 196 / 145 0a 1.288e+02± 1.638e+05 1a 9.571e+01± -3.663e+05 2a 4.362e+01± 3.155e+05 3a 1.83e+01± -1.16e+05 4a 5.177e+00± 1.687e+04

Fit of the continouus mass spectrum in data with a polynomial and look for

a peak in data:

No peaking structure found. ⇒  Set exclusion limit.

[GeV]*γm1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

σsi

gnifi

canc

e in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

γ-µ+µ

[GeV]*γm1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

σsi

gnifi

canc

e in

0

0.5

1

1.5

2

2.5

γ-e+e

significance significance

fit to data

p(x) = a0 + a1x + a2x2 + a3x

3 + a4x4

PRELIMINARY

PRELIMINARY PRELIMINARY

To get rid of the MC prediction:

µ e

Spare the region around J/ψ.

Benedikt Kloss - University of Mainz 20

event selection

compare with MC prediction

fit the invariant mass distribution in data

search for a peaking structure

calculate the exclusion limit between 1.5 GeV/c2 and 3.4 GeV/c2

check whether huge background is left

none is found

get rid of any data-MC comparison in the final result

below 1.5 GeV/c2: pion background is dominant

above 3.4 GeV/c2: too close to production threshold

Benedikt Kloss - University of Mainz 21

90% confidence level (CL) calculated with the algorithm by Rolke et al. (TRolke)

]2 [GeV/c2lm1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

even

ts /

10 M

eV

-2000

-1500

-1000

-500

0

500

1000

1500

2000

data - fit CL = 90%

combined statistics, including systematics

Nucl.Instrum.Meth., A551, 493-503 (2005)

PRELIMINARY

Benedikt Kloss - University of Mainz 22

J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev., D80, 075018 (2009)

dσ(e+e− →γ 'γ ISR → l+l−γ ISR )dσ(e+e− →γ * γ ISR → l+l−γ ISR )

=3π

2N fl+ l− ⋅

ε 2

α⋅mγ '

δm

We want to calculate it in bins of the mixing parameter ε:

Benedikt Kloss - University of Mainz 23

mass resolution, determined with MC

fine structure constant

number of decay modes of dark photon containing phase space

(contains R ratio, see next slide)

dark photon mass

mixing parameter determined exclusion limit

dσ(e+e− →γ 'γ ISR → l+l−γ ISR )dσ(e+e− →γ * γ ISR → l+l−γ ISR )

=3π

2N fl+ l− ⋅

ε 2

α⋅mγ '

δm

Benedikt Kloss - University of Mainz 24

taken from PDG 2014

R =σ(e+e− →hadrons)σ(e+e− →µ+µ−)

Γtot = Γ(γ '→e+e−) +Γ(γ '→µ+µ−)⋅ (1+ R( s))€

N fl+ l− =

ΓtotΓ(γ '→ l+l−)

Γ(γ '→ l+l−) =αε 2

3mγ '2 mγ '

2 − 4ml2 (mγ '

2 + 2ml2) Phys. Rev. D88, 015032 (2013)

[GeV]s1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

-2un

certa

inty

in 1

0

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

uncertainty of the R ratio

Benedikt Kloss - University of Mainz 25

Completely dominated by the uncertainty of the R ratio (everywhere above 5%)

taken from PDG 2014

Systematic uncertainty is estimated and implemented bin-by-bin (possible with TRolke algorithm1)

1 see https://root.cern.ch/root/html/tutorials/math/Rolke.C.html

26 Benedikt Kloss - University of Mainz

Now we are able to calculate the BESIII limit.

27 Benedikt Kloss - University of Mainz

PRELIMINARY

28 Benedikt Kloss - University of Mainz

•  Goal of the analysis is to search a dark photon signal using and events

•  no evidence has been found between 1.5 and 3.4 GeV/c2

•  an exclusion limit with 90% confidence has been calculated with the TRolke algorithm in bins of the mass and mixing parameter of the dark photon

•  values down to ε < 710-3 can be excluded

•  best exclusion limit in this mass range

µ+µ−γ ISR

e+e−γ ISR

Thank you for your attention!

PRELIMINARY

Benedikt Kloss - University of Mainz 29

Benedikt Kloss - University of Mainz 30

e+e− →µ+µ−γ ISR

e+e− →e+e−γ ISR

DLL(µ,e) = 2⋅ log p(µ)p(e)

⎝ ⎜

⎠ ⎟ > 0

,e)µDLL(-10 -8 -6 -4 -2 0 2 4 6 8 10

even

ts

0

500

1000

1500

2000

2500

3000

3500

4000 MCγ-µ+µ ) MCγ(n -e+ e

E / p > 0.8

E/p0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

even

ts0

5000

10000

15000

20000

25000 π µ

e

Benedikt Kloss - University of Mainz 31

over 10 bins

PRELIMINARY