Meson form factors and P physics at BESIII For the BESIII...

25
Meson form factors and P γ * γ * physics at For the BESIII Collaboration Speaker: Joachim Pettersson [email protected] Uppsala University FAIRNESS, 14-19 February 2016 1 / 25

Transcript of Meson form factors and P physics at BESIII For the BESIII...

  • Meson form factors and P → γ∗γ∗ physics atBESIII

    For the BESIII CollaborationSpeaker: Joachim Pettersson

    [email protected] University

    FAIRNESS,14-19 February 2016

    1 / 25

  • Outline

    • Introduction• BESIII experiment• Recent results from BESIII, π+π− form factor:

    γ∗

    π+

    π−

    • Physics in the P → γ∗γ∗ vertex:

    P

    γ∗

    γ∗

    2 / 25

  • Anomalous magnetic moment of the muonaµ = (g − 2)/2

    -700 -600 -500 -400 -300 -200 -100 0

    aµ – a

    µ exp ×

    10

    –11

    BN

    L-E

    82

    1 2

    00

    4

    HMNT 07 (e+e

    –-based)

    JN 09 (e+e

    –)

    Davier et al. 09/1 (τ-based)

    Davier et al. 09/1 (e+e

    –)

    Davier et al. 09/2 (e+e

    – w/ BABAR)

    HLMNT 10 (e+e

    – w/ BABAR)

    DHMZ 10 (τ newest)

    DHMZ 10 (e+e

    – newest)

    BNL-E821 (world average)

    –285 ±

    51

    –299 ±

    65

    –157 ±

    52

    –312 ±

    51

    –255 ±

    49

    –259 ±

    48

    –195 ±

    54

    –287 ±

    49

    0 ±

    63

    Eur. Phys. J. C 71 1515 (2011)

    3 / 25

  • Contributions to aµ

    Breakup of atheoµ

    atheoµ = aQEDµ + a

    weakµ + a

    QCDµ

    Breakup of aQCDµ

    aQCDµ = aVP,LOµ + a

    VP,HOµ + aLbLµ .

    µ

    µHad

    (a)

    µ

    µHad Had

    (b) µ µ

    π0 η η′

    (c)

    Example diagrams: (a) Leading-, (b) higher order hadronicvacuum polarisation and (c) Light-by-light contributions.

    4 / 25

  • Theory vs. experiment aµ

    Sector Contribution ×10−10 ReferenceaQEDµ 11658471.8± 0.0 [PRL 109, 111808 (2012)]aweakµ 15.3 ±0.1 [PRD 88, 053005 (2013)]aVP,LOµ 694.9±4.2 [J. Phys. G 38, 085003 (2011)]aVP,HOµ 98.4±0.7 [J. Phys. G 38, 085003 (2011)]aLbLµ 11.6±3.9 [Phys. Rept. 477, 1 (2009)]atheoµ 11659182.8±4.9 [J. Phys. G 38, 085003 (2011)]aexpµ 11659208.9±5.4±3.3 [PRD 73 072003 (2006)]aexpµ − atheoµ ≈30±8 3-4σ deviation

    5 / 25

  • Theory vs. experiment aµ

    Sector Contribution ×10−10 ReferenceaQEDµ 11658471.8± 0.0 [PRL 109, 111808 (2012)]aweakµ 15.3 ±0.1 [PRD 88, 053005 (2013)]aVP,LOµ 694.9±4.2 [J. Phys. G 38, 085003 (2011)]aVP,HOµ 98.4±0.7 [J. Phys. G 38, 085003 (2011)]aLbLµ 11.6±3.9 [Phys. Rept. 477, 1 (2009)]atheoµ 11659182.8±4.9 [J. Phys. G 38, 085003 (2011)]aexpµ 11659208.9±5.4±3.3 [PRD 73 072003 (2006)]aexpµ − atheoµ ≈30±8 3-4σ deviation

    6 / 25

  • Vacuum polarisation

    γ∗γ∗Had

    (a) Photon self energye−

    γ∗

    e−e+

    Had

    (b) Hadronic cross section

    σ(s)e+e−→hadrons =4πα

    sIm Πγ(s) (1)

    Im Πγ(s) is the photon vacuum polarization/self-energy function.

    Calculating VP

    • Calculating the contribution of low momentum hadrons notpossible in QCD.

    • Optical theorem relates VP amplitude to final state crosssections.

    7 / 25

  • Hadronic contributions to aVP,LOµ

    Relating cross section VP to aVP,LOµ

    • Many hadronic final states contribute.

    aVP,LOµ =1

    4π3

    ∫ ∞0

    ds K (s) σ(s)e+e−→hadrons (2)

    π−π+

    π−π+π0

    π−π+π−π+

    π−π+π0π0

    K 0SK0L

    K−K+

    Rest

    (a) Contributions to aVP ,LOµ .

    π−π+

    π−π+π0

    π−π+π−π+

    π−π+π0π0

    K 0SK0L

    K−K+

    Rest

    (b) Contributions to σaVP,LOµ

    .

    Eur. Phys. J. C 71 1515 (2011)

    8 / 25

  • Hadronic contributions to aVP,LOµ

    2E, GeV0.5 1 1.5 2 2.5 3 3.5 4

    cros

    s se

    ctio

    ns, n

    b

    -210

    -110

    1

    10

    210

    310

    γ-π+π 0π-π+π

    0π0π-π+π -π+π-π+π

    0π-π+π-π+π 0π2-π2+π 2

    -π3+π 3-+π+-K*0 K

    γ-K+ K-

    K+K-

    K+ K0π-K+ K

    0π0π-K+ K-π+π-K+ K

    0π-π+π-K+ K-π+π-π+π-K+ K

    -+π+-KS K ppbar

    PoS Hadron 2013, 126 (2013) [arXiv:1402.0618 [hep-ex]].

    • Most important: π−π+, π−π+π0, ,π−π+2π0, K−K+.• Largest errors π−π+, π−π+2π0, K−K+.

    9 / 25

  • Status of π−π+ form factor

    Eur. Phys. J. C 71 1515 (2011)

    BABAR and KLOE

    • High precision measurements, do not agree.• New measurement needed, BESIII can provide!

    10 / 25

    |F (s)ππ|2 ∝ σ(s)ππ

  • Beijing Electromagnetic Spectrometer IIIBeijing Electron Positron Collider II

    11 / 25

    BESIIICollaboration:12 Countries,

    55 Institutions,400 Members.

  • BESIII Detector

    BESIII sub-system resolutions

    • MDC: spatial 135 µm, σp ≈0.5 % @ 1 GeV.• TOF: 80 ps, barrel, 90 ps endcaps.• Calorimeter (CsI(Ti)): σE ≈2.5 %, barrel, σE ≈5 % endcaps

    @ 1 GeV.

    • PID using MDC, TOF.

    12 / 25

  • Event selection

    [GeV]π2m0 0.5 1 1.5 2 2.5 3 3.5 4

    even

    ts /

    20 M

    eV

    0

    5000

    10000

    15000

    20000

    25000 MCγ-π+π MCγ-µ+µ

    data

    [GeV]π2m0 0.5 1 1.5 2 2.5 3 3.5 4

    even

    ts /

    20 M

    eV

    0

    2000

    4000

    6000

    8000

    10000 MCγ-π+π MCγ-µ+µ

    data

    Event selections

    • Kinematic fit of π+π−γISR final state• Electrons rejected by BESIII standard PID system.• Artificial Neural Network for differentiating µ± − π±

    13 / 25

    e−

    e+ γISR

    γ∗

  • Form Factor of π+π− (Gounaris-SakuraiParametrisation)

    [GeV]s'0.6 0.65 0.7 0.75 0.8 0.85 0.9

    2 | π|F

    10

    15

    20

    25

    30

    35

    40

    45 BESIII fit

    BESIII

    Parameter BESIII PDG14mρ[MeV/c

    2 ] 776.0± 0.4 775.26± 0.25Γρ[MeV] 151.7± 0.7 147.8± 0.9mω[MeV/c

    2 ] 782.2± 0.6 782.65± 0.12Γω [MeV] fixed to PDG 8.49± 0.08|cρ| [10−3 ] 1.7± 0.2 -|φω| [rad] 0.04± 0.13 -

    14 / 25

  • Comparison of form factor result

    • New BESIII measurement inbetter agreement withKLOE than BaBar.

    [GeV]s’0.6 0.65 0.7 0.75 0.8 0.85 0.9

    |M/MB

    ESIII

    MfitM-

    M12 | π

    |F

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    BESIIIMfit

    SND

    CMD2-2006

    CMD2-2004

    15 / 25

  • Comparison of contribution to aVP,LOµ

    • Precision comparable with previous measurements• BESIII compatible with KLOE, confirms deviation of 3.4 σ• Phys.Lett. B753 (2016) 629-638, arXiv:1507.0818

    Outlook

    • Full low energy range: Improve g-2• High energy range: Meson spectroscopy, pion form factor.

    16 / 25

  • Physics in the P → γ∗γ∗ vertex

    µ µ

    π0 η η′

    P

    γ∗

    γ∗

    Light-by-light contribution to aµ

    Data on process involving P → γ∗γ∗ needed for aLbLµ calculations.

    17 / 25

  • Pseudo scalars → leptons

    P → γ∗γ∗ vertex in P → e+e−

    Experiment 6= theory:

    • π0 → e+e− branching ratio, ≈ 2− 3σ deviation[Masjuan15,Dorokhov07].

    • What about other P → γ∗γ∗ processes involving η, η′, ηc?• P → e+e− door to new physics? U-bosons, leptoquarks etc.

    [Phys. Rev. D78, 115002],[arxiv:0704.3498v2].

    18 / 25

  • Status of P → e+e−

    Table : Pseudoscalar to lepton branching ratios.Theory from [Petri2010,Dorokhov2009].Experiments: [KTeV2007], [HADES2012], [CMD,SND2015].

    Branching ratio Theory Experiment

    B(π0 → e+e−) (6.23± 0.12)× 10−8 (7.49± 0.38)× 10−8B(η → e+e−) (5.2± 0.3)× 10−9 ≤ 5.6 · 10−6B(η′ → e+e−) (1.9± 0.3)× 10−10 ≤ 1.2 · 10−8B(ηc → e+e−) - -

    No prediction or measurement for ηc !

    Enter BESIII!

    19 / 25

  • Pseudo scalars → leptons

    ηcγ∗

    γ∗

    l−

    l+

    (a) Decay.

    γ∗

    γ∗

    ηcl+

    l−

    (b) Formation.

    The P → l+l− process• Physics accessible in bot decay and formation.

    20 / 25

  • Modes of access: Decay

    J/Ψηc

    γ

    (a) ηc in J/Ψ radiative decay.

    ηcγ∗

    γ∗

    l−

    l+

    (b) ηc Decay.

    • Decay product J/Ψ→ ηcγ → (e+e−)ηcγ.

    21 / 25

  • Modes of access: Decay

    J/Ψηc

    γ

    (a) ηc in J/Ψ radiative decay.

    ηcγ∗

    γ∗

    l−

    l+

    (b) ηc Decay.

    • Decay product J/Ψ→ ηcγ → (e+e−)ηcγ.• BESIII have 109 J/Ψ on tape.B(J/Ψ→ ηcγ) ≈ 1.7%→≈ 107 ηc candidates.

    • ηcγ → (e+e−)ηcγ → Background from (e+e−)bhabaγISR .• ηcγ → (µ+µ−)ηcγ → Background from

    e+e− → µ+µ−γISR/(µ+µ−)J/ΨγISR

    22 / 25

  • Modes of access: Formation

    γ∗

    γ∗

    ηcl+

    l−

    (a) ηc Formation in e+e−.

    ηcX

    (b) ηc Decay into final state.

    • Direct production e+e− → ηc . Possible at BESIII!• Only background from em-continuum.• Choice of final state(s) to study.• C-even final states suppress direct γ∗ background.

    Work in progress!

    23 / 25

  • Modes of access: Formation

    γ∗

    γ∗

    ηcl+

    l−

    (a) ηc Formation in e+e−.

    ηcX

    (b) ηc Decay into final state.

    • Direct production e+e− → ηc . Possible at BESIII!• Only background from em-continuum.• Choice of final state(s) to study.• C-even final states suppress direct γ∗ background.

    Work in progress!

    24 / 25

  • Summary

    • BESIII π+π− form factor and aVP,LOµ measurement precisioncomparable with previous measurements.

    • BESIII compatible with KLOE, confirms deviation of 3.4 σ.• π+π− pater published: Phys.Lett. B753 (2016) 629-638,

    arXiv:1507.0818.

    • e+e− → ηc in progress.

    Thank you for the attention!

    25 / 25