Azimuthal#correlaons#of#neutral# pions#and#charged#jets...

1
2 0 1 5 K O B E JAPAN (rad) ϕ -1 0 1 2 3 4 ) -1 (rad ϕ /d ch,jet N d trig 0 π N 1/ 0 5 10 15 ALICE Preliminary = 7 TeV s pp EMCal-triggered c > 10 GeV/ assoc T,ch,jet p (rad) ϕ -1 0 1 2 3 4 ) -1 (rad ϕ /d ch,jet N d trig 0 π N 1/ 0 2 4 6 c < 12 GeV/ trig 0 π T, p 8 < c < 20 GeV/ trig 0 π T, p 16 < c < 36 GeV/ trig 0 π T, p 24 < Systematic uncertainty c > 20 GeV/ assoc T,ch,jet p (rad) ϕ -1 0 1 2 3 4 ) -1 (rad ϕ /d ch,jet N d trig 0 π N 1/ 0 1 2 c > 30 GeV/ assoc T,ch,jet p ALIPREL71751 1. Select a neutral cluster with λ 0 2 > 0.3, track matching etc. (λ 0 : ellip=cal shower shape long axis) 2. Find local maxima: cells inside the clusters with higher energy than adjacent cells. Used clusters with NLM(Number of Local Maxima) <= 2. 3. Split the cluster in two new subclusters taking the two highest local maxima and aggregate all towers around them (form a 3x3 cluster). 4. Selected clusters with subclusters having an invariant mass at most 3 sigma from the π 0 mass. ALI-PERF-29549 Azimuthal correla=ons of neutral pions and charged jets in pp collisions at 7 TeV and PbPb collisions at 2.76 TeV Daisuke Watanabe for the ALICE Collabora=on Jet measurements play a cri=cal role in probing the hot and high energydensity ma^er created in heavyion collisions through parton energy loss via the observa=on of the jet structure modifica=on or jet suppression. Figure 1 shows the posi=on of hardsca^ering centers in the transverse plane generated in qPYTHIA. Assuming no inmedium energy loss per unit path length (q = 0 GeV 2 /fm), the distribu=on follows the unbiased distribu=on of hardsca^erings, whereas for large q values and high energe=c π 0 s it is strongly biased towards short jet path lengths [1]. In fact, the same effect maximizes the path length for jet recoiling from a high transverse momentum trigger hadron that mainly comes from the surface of the medium. In this poster, we report π 0 charged jet azimuthal correla=ons with high p T neutral pion triggers measured in pp collisions at √s = 7 TeV and the π 0 charged hadron correla=on results in PbPb collisions at √s NN = 2.76 TeV as the forthcoming results of π 0 jet analysis in PbPb collisions. TPC ITS EMCal The ALICE detector [3] was built to exploit the unique physics poten=al of nucleusnucleus interac=on at the LHC and is capable of studying jet quenching effects via par=cle iden=fica=on and jet reconstruc=on. This analysis used two types of detectors, the central tracking devices, the inner tracking system ITS and =me projec=on chamber TPC, for charged par=cle tracks measurement, and the electromagne=c calorimeter EMCal for π 0 measurements. The EMCal was also used as a trigger detector selec=ng events with energy deposi=ons larger than 4 and 5.5 GeV (the threshold changed during data taking). Charged par=cles measured in the TPC and ITS were used to reconstruct jets. We u=lized the an=k T algorithm [4] from the FastJet package [5]. An=k T algorithm Resolu=on parameter R = 0.4 Minimum track p T > 0.15 GeV/c Jet p T > 10 GeV/c Jet pseudorapidity |η jet | < 0.5 Reconstructed jet area A > 0.4 Mo=va=on ALICE experiment Jet reconstruc=on π 0 iden=fica=on method Cluster spli+ng method π 0 – charged hadron correla=on in PbPb 2.76 TeV π 0 jet correla=ons have been measured in pp collisions at √s = 7 TeV with cluster splinng method Two clear jet peaks are observed, indica=ng that high p T produc=on is correlated with jet produc=on Both near and awayside widths are decreasing with increasing p T of the trigger π 0 . The decrease is stronger for the awayside correla=on width Enhancement of nearside and suppression of awayside yields in PbPb collisions in π 0 hadron correla=on observed The next step is to extend the π 0 hadron analysis to π 0 jet analysis and measure the trigger π 0 p T dependence of the ra=o of per trigger jet yields I AA in PbPb at √s NN = 2.76 TeV Summary [1] Thorsten Renk, arXiv:1408.6684v1[hepph], 28 Aug 2014 [2] ALICE Collabora=on, J. Allen, et al, CERNLHCC2010011, ALICETDR014ADD1 [3] ALICE Collabora=on, B. Abelev, et al, Int. J. Mod. Phys. A 29 (2014) 1430044 [4] M. Cacciari, G. P. Salam and G. Soyez et al, JHEP 0804 (2008) 063 [5] M. Cacciari, G. P. Salam and G. Soyez et al, CERNPHTH/2011297 [6] T. A. Trainor, Phys.Rev. C81 (2010) 014905 References Fig. 1 qPYTHIA simula=on of distribu=on of hardscaBering centers in the transverse plane [2]. Fig. 2 ALICE detector [3] Fig. 6 π 0 jet azimuthal correla=ons normalized by number of trigger π 0 for trigger π 0 p T regions 8 < p T,π0 trig < 12 GeV/c, 16 < p T,π0 trig < 20 GeV/c, 24 < p T,π0 trig < 36 GeV/c, and associated jet thresholds p T, ch,jet asso > 10, 20, 30 GeV/c. Fig. 7 Near and awayside Gaussian widths as a func=on of trigger p T for several charged jet p T thresholds (p T, ch,jet asso > 10, 20, 30 GeV/c ). Jet selec=on criteria Fig. 3 The reconstructed jet shape by using the an=k T algorithm [4]. Fig. 4 λ 0 2 vs E T for neutral clusters. x y π 0 charged jet azimuthal correla=ons Near and awayside width ^ ^ π 0 – jet correla=on results in pp 7 TeV ) c (GeV/ 0 π T, p 10 15 20 25 30 35 40 -1 ) c (GeV/ T p /d 0 π N d event N 1/ -5 10 -4 10 -3 10 -2 10 -1 10 spectra 0 π Uncorrected Raw +Mass cuts 2 0 λ 2 NLM = 7 TeV s pp > 4-5.5 GeV patch EMCal L0 trigger, E ALICE Preliminary ALIPREL71747 Fig. 5 Uncorrected π 0 distribu=on with NLM <=2 and applied analysis cuts. 1. Azimuthal correla=on: two clear jetlike peaks at near and away side of the trigger π 0 are observed in pp collisions. 2. Yields of jetlike peaks increase with increasing π 0 p T . 3. The near and awayside Gaussian widths decrease moderately with increasing π 0 p T . ) c (GeV/ trig 0 π T, p 10 15 20 25 30 35 (rad) near σ 0 0.05 0.1 0.15 0.2 = 7 TeV s pp EMCal-triggered Near side ALICE Preliminary ) c (GeV/ trig 0 π T, p 10 15 20 25 30 35 (rad) away σ 0 0.2 0.4 0.6 Away side c > 10 GeV/ assoc T,ch,jet p c > 20 GeV/ assoc T,ch,jet p c > 30 GeV/ assoc T,ch,jet p Systematic uncertainty ALIPREL71755 (GeV/c) T p 3 4 5 6 7 8 9 10 ) c -1 (GeV T p /d assoc dN trig 1/N -2 10 -1 10 1 =2.76 TeV NN s Pb-Pb 0-10% c < 16.0 GeV/ trig T p 8.0 < | < 0.7 ϕ Near side (NS) | | < 0.7 π - ϕ Away side (AS) | NS: Flat Background AS: Flat Background NS: Flow Background AS: Flow Background ALICE Preliminary ALIPREL79322 (GeV/c) T p 3 4 5 6 7 8 9 10 AA I 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 =2.76 TeV NN s Pb-Pb 0-10% c < 16.0 GeV/ trig T p 8.0 < | < 0.7 ϕ Near side | Flat Background ± -h 0 π Flat Background ± -h ± h Flow Background ± -h 0 π Flow Background ± -h ± h Black points: PRL 108, 092301 (2012) ALICE Preliminary ALIPREL79136 (GeV/c) T p 3 4 5 6 7 8 9 10 AA I 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 =2.76 TeV NN s Pb-Pb 0-10% c < 16.0 GeV/ trig T p 8.0 < | < 0.7 π - ϕ Away side | Flat Background ± -h 0 π Flat Background ± -h ± h Flow Background ± -h 0 π Flow Background ± -h ± h Black points: PRL 108, 092301 (2012) ALICE Preliminary ALIPREL79167 Flat background subtrac=on: ZYAM method [6] Flow background subtrac=on: Cϕ): per trigger normalized measured azimuthal correla=on func=on. Jϕ) : per trigger normalized jetlike correla=on aver ellip=c flow background subtrac=on. b 0 : background scale factor obtained from the ZYAM method [6]. Fig. 8 Near and awayside per trigger yields of charged hadrons for π 0 triggers with 8 < p T,π0 trig < 16 GeV/c. Fig. 9 Near and awayside ra=o of per trigger yields of charged hadrons (I AA ) for π 0 triggers with 8 < p T,π0 trig < 16 GeV/c. I AA ( p p 0 T , p h ± T )= Y PbPb ( p p 0 T , p h ± T ) Y pp ( p p 0 T , p h ± T ) J (Dj )= C(Dj ) - b 0 (1 + 2hu trig 2 u assoc 2 i cos(2Dj )) The Ra=o of per trigger yields I AA is defined as Small enhancement of nearside and suppression of awayside yields observed in π 0 hadron analysis.

Transcript of Azimuthal#correlaons#of#neutral# pions#and#charged#jets...

Page 1: Azimuthal#correlaons#of#neutral# pions#and#charged#jets ...utkhii.px.tsukuba.ac.jp/report/2015/QM2015/2015... · Quark Matter 2015 Official Logo Created by Masakiyo Kitazawa, Oct.

Quark Matter 2015 Official Logo

Created by Masakiyo Kitazawa, Oct. 2014

2 0 1 5 K O B E J A P A N

2015 KOBE JAPAN

2 0 1 5 K O B E J A P A N

(rad)ϕ∆-1 0 1 2 3 4

)-1

(rad

ϕ∆

/dch

,jet

N d

trig 0 π

N1/

0

5

10

15ALICE Preliminary

= 7 TeVspp EMCal-triggered

c > 10 GeV/assocT,ch,jetp

(rad)ϕ∆-1 0 1 2 3 4

)-1

(rad

ϕ∆

/dch

,jet

N d

trig 0 π

N1/

0

2

4

6

c < 12 GeV/trig0πT,

p8 <

c < 20 GeV/trig0πT,

p16 <

c < 36 GeV/trig0πT,

p24 <

Systematic uncertainty

c > 20 GeV/assocT,ch,jetp

(rad)ϕ∆-1 0 1 2 3 4

)-1

(rad

ϕ∆

/dch

,jet

N d

trig 0 π

N1/

0

1

2

c > 30 GeV/assocT,ch,jetp

ALI−PREL−71751

1.   Select  a  neutral  cluster  with  λ02  >  0.3,  track  matching  etc.  (λ0:  ellip=cal            shower  shape  long  axis)  2.   Find  local  maxima:  cells  inside  the  clusters  with  higher  energy  than                                adjacent  cells.  Used  clusters  with  NLM(Number  of  Local  Maxima)  <=  2.  3.   Split  the  cluster  in  two  new  sub-­‐clusters  taking  the  two    highest  local                maxima  and  aggregate  all  towers  around  them  (form  a  3x3  cluster).  4.   Selected  clusters  with  sub-­‐clusters  having  an  invariant  mass  at  most  3  sigma  from  the  π0  mass.  

ALI-PERF-29549

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft“ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas ofthe resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by thespecific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips alens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries fordifferent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’ssusceptibility to point-like radiation, and the active area (A) which measures its susceptibility todiffuse radiation. The simplest place to observe the impact of soft resilience is in the passive area fora jet consisting of a hard particle p1 and a soft one p2, separated by a y − φ distance ∆12. In usualIRC safe jet algorithms (JA), the passive area aJA,R(∆12) is πR2 when ∆12 = 0, but changes when∆12 is increased. In contrast, since the boundaries of anti-kt jets are unaffected by soft radiation,

4

Azimuthal  correla=ons  of  neutral  pions  and  charged  jets  in  pp  collisions  at  7  TeV  and  Pb-­‐Pb  collisions  at  2.76  TeV  

Daisuke  Watanabe  for  the  ALICE  Collabora=on

Jet  measurements  play  a  cri=cal  role  in  probing  the  hot  and  high  energy-­‐density  ma^er  created  in  heavy-­‐ion  collisions  through  parton  energy  loss  via  the  observa=on  of  the  jet  structure  modifica=on  or  jet  suppression.  Figure  1  shows  the  posi=on  of  hard-­‐sca^ering  centers  in  the  transverse  plane  generated  in  qPYTHIA.  Assuming  no  in-­‐medium  energy  loss  per  unit  path  length  (q  =  0  GeV2/fm),  the  distribu=on  follows  the  unbiased  distribu=on  of  hard-­‐sca^erings,  whereas  for  large  q  values  and  high  energe=c  π0s  it  is  strongly  biased  towards  short  jet  path  lengths  [1].  In  fact,  the  same  effect  maximizes  the  path  length  for  jet  recoiling  from  a  high  transverse  momentum  trigger  hadron  that  mainly  comes  from  the  surface  of  the  medium.  In  this  poster,  we  report  π0-­‐  charged  jet  azimuthal  correla=ons  with  high  pT  neutral  pion  triggers  measured  in  pp  collisions  at  √s  =  7  TeV  and  the  π0-­‐  charged  hadron  correla=on  results  in  Pb-­‐Pb  collisions  at  √sNN  =  2.76  TeV    as  the  forthcoming  results  of  π0-­‐  jet  analysis  in  Pb-­‐Pb  collisions.  

TPC

ITS

EMCal The  ALICE  detector  [3]  was  built  to  exploit  the  unique  physics  poten=al  of  nucleus-­‐nucleus  interac=on  at  the  LHC  and  is  capable  of  studying  jet  quenching  effects  via  par=cle  iden=fica=on  and  jet  reconstruc=on.  This  analysis  used  two  types  of  detectors,  the  central  tracking  devices,  the  inner  tracking  system  ITS  and  =me  projec=on  chamber  TPC,  for  charged  par=cle  tracks  measurement,  and  the  electromagne=c  calorimeter  EMCal  for  π0  measurements.  The  EMCal  was  also  used  as  a  trigger  detector  selec=ng  events  with  energy  deposi=ons  larger  than  4  and  5.5  GeV  (the  threshold  changed  during  data  taking).    

Charged  par=cles  measured  in  the  TPC  and  ITS  were  used  to  reconstruct  jets.  We  u=lized  the  an=-­‐kT  algorithm  [4]  from  the  FastJet  package  [5].

 •  An=-­‐kT  algorithm  •  Resolu=on  parameter  R  =  0.4    •  Minimum  track  pT  >  0.15  GeV/c  •  Jet  pT  >  10  GeV/c  •  Jet  pseudorapidity  |ηjet|  <  0.5    •  Reconstructed  jet  area  A  >  0.4  

Mo=va=on

ALICE  experiment Jet  reconstruc=on

π0  iden=fica=on  method   Cluster  spli+ng  method

π0  –  charged  hadron  correla=on  in  Pb-­‐Pb  2.76  TeV

•  π0-­‐  jet  correla=ons  have  been  measured  in  pp  collisions  at  √s  =  7  TeV  with  cluster  splinng  method  •  Two  clear  jet  peaks  are  observed,  indica=ng  that  high  pT  produc=on  is  correlated  with  jet  produc=on  •  Both  near  and  away-­‐side  widths  are  decreasing  with  increasing  pT  of  the  trigger  π0.  The  decrease  is  stronger  for  the  away-­‐side  correla=on  width  

•  Enhancement  of  near-­‐side  and  suppression  of  away-­‐side  yields  in  Pb-­‐Pb  collisions  in  π0-­‐  hadron  correla=on  observed  

•  The  next  step  is  to  extend  the  π0-­‐hadron  analysis  to  π0-­‐  jet  analysis  and  measure  the  trigger  π0  pT  dependence  of  the  ra=o  of  per  trigger  jet  yields  IAA  in  Pb-­‐Pb  at  √sNN  =  2.76  TeV  

Summary

[1]  Thorsten  Renk,  arXiv:1408.6684v1[hep-­‐ph],  28  Aug  2014  [2]  ALICE  Collabora=on,  J.  Allen,  et  al,  CERN-­‐LHCC-­‐2010-­‐011,  ALICE-­‐TDR-­‐014-­‐ADD-­‐1  [3]  ALICE  Collabora=on,  B.  Abelev,  et  al,  Int.  J.  Mod.  Phys.  A  29  (2014)  1430044  [4]  M.  Cacciari,  G.  P.  Salam  and  G.  Soyez  et  al,  JHEP  0804  (2008)  063  [5]  M.  Cacciari,  G.  P.  Salam  and  G.  Soyez  et  al,  CERN-­‐PH-­‐TH/2011-­‐297  [6]  T.  A.  Trainor,  Phys.Rev.  C81  (2010)  014905    

References

Fig.  1  qPYTHIA  simula=on  of  distribu=on  of  hard-­‐scaBering  centers  in  the  transverse  plane  [2].  

Fig.  2  ALICE  detector  [3]  

Fig.  6  π0-­‐  jet  azimuthal  correla=ons  normalized  by  number  of  trigger  π0  for  trigger  π0  pT  regions    8  <  pT,π0trig  <  12  GeV/c,  16  <  pT,π0trig  <  20  GeV/c,  24  <  pT,π0trig  <  36  GeV/c,  and  associated  jet  thresholds    pT,  ch,jetasso  >  10,  20,  30  GeV/c.  

Fig.  7  Near  and  away-­‐side  Gaussian  widths  as  a  func=on  of  trigger  pT  for  several  charged  jet  pT  thresholds  (pT,  ch,jetasso    >  10,  20,  30  GeV/c  ).  

 

Jet  selec=on  criteria  

Fig.  3  The  reconstructed  jet  shape  by  using  the  an=-­‐kT  algorithm  [4].

Fig.  4  λ02  vs  ET  for  neutral  clusters.

x

y

π0-­‐  charged  jet  azimuthal  correla=ons  

Near  and  away-­‐side  width

^ ^

π0  –  jet  correla=on  results  in  pp  7  TeV  

)c (GeV/0πT, p

10 15 20 25 30 35 40

-1 )c (G

eV/

Tp/d0 π

N d

even

tN

1/

-510

-410

-310

-210

-110

spectra0πUncorrected Raw +Mass cuts2

2≤NLM

= 7 TeVspp > 4-5.5 GeV

patchEMCal L0 trigger, E

ALICE Preliminary

ALI−PREL−71747

Fig.  5  Uncorrected  π0  distribu=on  with  NLM  <=2  and  applied  analysis  cuts.  

1.  Azimuthal  correla=on:  two  clear  jet-­‐like              peaks  at  near  and  away  side  of  the  trigger              π0  are  observed  in  pp  collisions.  2.      Yields  of  jet-­‐like  peaks  increase  with                  increasing  π0  pT.  3.  The  near  and  away-­‐side  Gaussian  widths              decrease  moderately  with  increasing  π0  pT.                )c (GeV/trig

0πT,p

10 15 20 25 30 35

(rad

)ne

arσ

0

0.05

0.1

0.15

0.2

= 7 TeVspp EMCal-triggeredNear side

ALICE Preliminary

)c (GeV/trig0πT,

p10 15 20 25 30 35

(rad

)aw

ayσ

0

0.2

0.4

0.6Away side

c > 10 GeV/assocT,ch,jetp

c > 20 GeV/assocT,ch,jetp

c > 30 GeV/assocT,ch,jetp

Systematic uncertainty

ALI−PREL−71755

(GeV/c)T

p3 4 5 6 7 8 9 10

)c-1(G

eVTp

/das

soc

dNtri

g1/

N

-210

-110

1

=2.76 TeVNNsPb-Pb 0-10%

c < 16.0 GeV/trigTp8.0 <

| < 0.7ϕ∆Near side (NS) || < 0.7π-ϕ∆Away side (AS) |

NS: Flat Background AS: Flat Background NS: Flow BackgroundAS: Flow Background

ALICE Preliminary

ALI−PREL−79322

(GeV/c)T

p3 4 5 6 7 8 9 10

AAI

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4=2.76 TeVNNsPb-Pb

0-10%c < 16.0 GeV/trig

Tp8.0 <

| < 0.7ϕ∆Near side |

Flat Background±-h0π

Flat Background±-h±h Flow Background±-h0π

Flow Background±-h±h

Black points: PRL 108, 092301 (2012)

ALICE Preliminary

ALI−PREL−79136 (GeV/c)

Tp

3 4 5 6 7 8 9 10

AAI

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4=2.76 TeVNNsPb-Pb

0-10%c < 16.0 GeV/trig

Tp8.0 <

| < 0.7π-ϕ∆Away side |

Flat Background±-h0π

Flat Background±-h±h Flow Background±-h0π

Flow Background±-h±h

Black points: PRL 108, 092301 (2012)

ALICE Preliminary

ALI−PREL−79167

•  Flat  background  subtrac=on:  ZYAM  method  [6]  •  Flow  background  subtrac=on:    

                   -­‐  C(Δϕ):  per  trigger  normalized  measured                                            azimuthal  correla=on  func=on.            -­‐  J(Δϕ)  :  per  trigger  normalized  jet-­‐like                                          correla=on  aver  ellip=c  flow  background                                          subtrac=on.            -­‐  b0            :  background  scale  factor  obtained  from                                        the  ZYAM  method  [6].  Fig.  8  Near  and  away-­‐side  per  trigger  yields  of  charged  

hadrons  for  π0  triggers  with  8  <  pT,π0trig  <  16  GeV/c.  

 

Fig.  9  Near  and  away-­‐side  ra=o  of  per  trigger  yields  of  charged  hadrons  (IAA)  for  π0  triggers  with  8  <  pT,π0trig  <  16  GeV/c.  

 

52 ALICE Analysis Note 2013

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

T/d

pa

sso

cd

Ntr

ig1

/N

-110

=2.76 TeVNN

sPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7ϕ∆Near side |

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

T/d

pa

sso

cd

Ntr

ig1

/N

-210

-110

=2.76 TeVNN

sPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7π-ϕ∆Away side |

Fig. 59: Per-trigger yield of charged hadrons distributions subtracted flat background on near side |Dj|< 0.7 (left),away side |Dj �p|< 0.7 (right) in trigger pT at 8.0 < ptrig

T < 16.0 GeV/c in Pb-Pb 0-10% atp

sNN = 2.76 TeV.The blue boxes are the total systematic uncertainty.

Flow background:665

Taking into account the background of flow, the per-trigger yield of charged hadrons on near side, away666

side in in Pb-Pb collisions 0-10% centrality atp

sNN = 2.76 TeV are obtained, shown in Fig. 60.

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

T/d

pa

sso

cd

Ntr

ig1

/N

-110

=2.76 TeVNN

sPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7ϕ∆Near side |

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

T/d

pa

sso

cd

Ntr

ig1

/N

-210

-110=2.76 TeV

NNsPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7π-ϕ∆Away side |

Fig. 60: Per-trigger yield of charged hadrons distributions subtracted flow background on near side |Dj| < 0.7(left), away side |Dj �p|< 0.7 (right) in trigger pT at 8.0 < ptrig

T < 16.0 GeV/c in Pb-Pb 0-10% atp

sNN = 2.76TeV. The blue boxes are the total systematic uncertainty.

667

Fig. 61 shows the same results of the per-trigger yield of charged hadrons on near side, away side in in668

Pb-Pb collisions 0-10% centrality atp

sNN = 2.76 TeV as Fig. 59 and Fig. 60, but in one figure.669

8.3 Yield modification factor670

In this section, the yield modification factors, IAA and ICP, are calculated. The factors can be written as671

IAA(pp0

T , ph±T ) =

Y PbPb(pp0

T , ph±T )

Y pp(pp0T , ph±

T ); (26)

22 ALICE Analysis Note 2013

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

ass

oc

TdN

/dp

trig

1/N -110

= 2.76 TeVNN

sPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7φ∆Near side |

(GeV/c)T

p3 4 5 6 7 8 9 10

c)-1

(G

eV

ass

oc

TdN

/dp

trig

1/N

-210

-110 = 2.76 TeV

NNsPb-Pb

0-10%

< 16.0 GeV/ctrig

T8.0 < p

| < 0.7π-φ∆Away side |

Fig. 18: The systematic uncertainty from the three pedestal subtractions of the yield on Near side |Dj| < 0.7(left), Away side |Dj �p| < 0.7 (right) in Pb-Pb 0-10% at

psNN = 2.76 TeV, respectively. The blue boxed is the

systematic uncertainty.

to fit the distribution in the pT range. The fit error is considered to estimate the systematic uncertainty431

at 8.0 < pT < 16.0 GeV/c. The fit result is 0.0347±0.0043, which gives the systematic uncertainty of432

⇠ 12.4%. To the charged hadron flow, it has ⇠ 2% systematic uncertainty at pT > 6.0 GeV/c. Finally,

GeV/c0 2 4 6 8 10 12 14

) -π

++

π(

0.02

0.04

0.06

0.08

0.1

0.12 = 2.76 TeVNN

sPb-Pb

0-10%

0.0043±pol0 fit: 0.0347

(GeV/c)T

p1 2 3 4 5 6 7 8 9 10

) -+

h+

(h

0

0.02

0.04

0.06

0.08

0.1

0.12 = 2.76 TeVNN

sPb-Pb

0-10%

Fig. 19: u2 flow of charged pions (left) and charged hadrons (right) in Pb-Pb 0-10% atp

sNN = 2.76 TeV. In theleft, the blue line is the fit value at 8.0 < pT < 16.0 GeV/c with0.0347±0.0043. The fit error is used to estimatethe systematic uncertainty of flow.

433

the jet-like correlations is obtained by434

J(Dj) =C(Dj)�b0(1+2hu trig2 uassoc

2 icos(2Dj)) (13)

where J(Dj) and C(Dj) are the jet-like correlations and all correlations obtained by Eq. 10, respectively;435

u trig2 and uassoc

2 are the elliptic flow coefficients of trigger particles and associated particles, respectively;436

b0 is the background scaled factor, which is generally determined by a pedestal subtraction employing437

the zero-yield-at-minimum (ZYAM) method shown in Sec. 5.4.2.438

The  Ra=o  of  per  trigger  yields  IAA    is  defined  as  

•  Small  enhancement  of  near-­‐side            and  suppression  of  away-­‐side            yields  observed  in  π0-­‐hadron            analysis.