1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F....

42
1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer- Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign FNAL E866/Nusea Collaboration Nov 21, 2006 at Jefferson Lab

Transcript of 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F....

Page 1: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

1

Probing the Nucleon Structure with Azimuthal Asymmetries

--cos2φ distribution & Boer-Mulders F. Lingyan Zhu

University of Illinois at Urbana-Champaign

FNAL E866/Nusea Collaboration

Nov 21, 2006 at Jefferson Lab

Page 2: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

2

Sea Asymmetry from Drell-Yan Processes

Towell et al., Phys.Rev. D64 (2001) 052002

Drell-Yan enables us to measured dbar/ubar asymmetry precisely.

Page 3: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

3

Angular Distribution in the Drell-Yan Process

In the simple parton model: ( for massless quarks and measured

relative to the annihilation axis)

=1 and ==0

Page 4: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

4

Conway et al., PRD39,92(1989)

First-order QCD Corrections to Drell-Yan

• Increase the overall cross section by a K-factor~2.

•The Lam-Tung relation still hold (in any reference frame for massless quarks), reflecting the spin-1/2 nature of the quarks. Lam & Tung, PRD21,2712(1980)

(Analog to Callan-Gross relation in DIS)

•The NLO correction at O(s2) to the

angular distribution is small. Mirkes & Ohnemus, PRD51,,4891(1995)With QCD corrections, the calculated cross section agrees with data.

Page 5: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

5

Conway et al., PRD39,92(1989)

E615 at Fermilab: 252 GeV π- + W

Violation of the Lam-Tung Relation

Also see NA10 results: 140/194 GeV π- + W, 286 GeV π- + W/d

Z. Phys. C37, 545 (1988)

•The deviations from 1+cos2due to the soft-gluon resummation are less than 5%.Chiappatta & Bellac,ZPC32,521 (1986)

•The correction due to the intrinsic transverse momenta is estimated to be less than 0.05Cleymans & Kuroda, PLB105,68(1981)

•Lam-Tung relation not affected by lowest order QCD correction even at small QT. Boer & Wogelsang, hep-ph/0604177

Page 6: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

6

Conway et al., PRD39,92(1989) E615 at Fermilab: 252 GeV π- + W

Angular Distribution in the W Drell-Yan Process

Also see NA10 results: 140/194 GeV π- + W, 286 GeV π- + W/d Z. Phys. C31, 513 (1986); Z. Phys. C37, 545 (1988)

Page 7: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

7

Conway et al., PRD39,92(1989) E615 at Fermilab: 252 GeV π- + W

Azimuthal cos2φ Distribution in the W Drell-Yan

NA10 at CERN: 140/194/286 GeV π- + W Z. Phys. C37, 545 (1988)

Page 8: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

8

Possible Explanations for the cos2φ Asymmetry

The high twist effect.Brandenburg, Brodsky, Khoze & Muller, PRL73,939(1994).

The nuclear distortion of hadronic projectile wavefunction, typically a spin-orbit effect occurring on the nuclear surface.

Bianconi & Radici, JPG31,645(2005).

The spin correlation due to nontrival QCD vacuum.Brandenburg, Nachtmann & Mirkes, Z. Phy. C60,697(1993); …

The hadronic effect due to non-zero Boer-Mulders function h1┴ .

Boer, PRD60,014012(1999); …

Page 9: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

9

Higher Twist Effect?Higher twist effect leads to =-1 for low mass as x 1.

Berger & Brodsky, PRL42, 940 (1979); Berger, ZPC4,289(1980)

Higher twist effect in terms of pion bound state effect: Brandenburg, Brodsky, Khoze & Muller, PRL73,939(1994)

High twist in terms of pion bound state effect is not enough.

Page 10: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

10

Nuclear Effect?

NA10 Z. Phys. C37, 545 (1988)Open: DeuteriumSolid: Tungsten

Nuclear effect should not be the dominant contribution.

Page 11: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

11

The factorization-breaking spin correlation due to nontrivial QCD vacuum may fit the NA10 data at 194 GeVBrandenburg, Nachtmann & Mirkes, Z. Phy. C60,697(1993)

The helicity flip in the instanton-induced contribution may lead to nontrivial vacuum and violation of the Lam-Tung relation.Boer,Brandenburg,Nachtmann&Utermann, EPC40,55(2005).Brandenburg,Ringwald&Uermann, hep-ph/0605234

This vacuum effect should be flavor blind.

QCD Vacuum Effect

0=0.17mT=1.5

Page 12: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

12

Leading-Twist Quark Distributions

Tf T TS (p×k )

1( ) Lh T T Lk s S

1ˆ h T Ts (p×k )

Survive k┴ integration

k┴ - dependent, T-odd

k┴ - dependent, T-even

1Lg L LS s

Page 13: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

13

Boer-Mulders Function h1┴

An spin-correlation approach in terms of h1┴ can fit the NA10 data

at 194 GeV. Boer, PRD60,014012(1999)

On the base of quite general arguments, for |qT|<<Q(=m ),Salvo,hep-ph/0407208.

1=0.5mC=2.3T=CH=1

221 12 2

( , ) ( )T TkC HTT H

T C

M Mh x k c e f x

k M

Page 14: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

14

Models for Boer-Mulders Function h1┴

Initial-state gluon interaction can produce nonzero h1┴ for the

proton in the quark-scalar diquark model. In this model, h1

┴ =f1T┴.

Boer,Brodsky&Hwang, PRD67,054003(2003).Twist 2 (as well as the kinematic twist 4) contribution in a

parton-spectator framework Gamberg&Goldstein, hep-ph/0506127.

Page 15: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

15

Pion Boer-Mulders Function

Final-state interaction with one gluon exchange can produce nonzero h1

┴ for the pion in the quark-spectator-antiquark model with constant coupling g.

Lu&Ma, PRD70,094044(2004).The quark-spectator-antiquark model with effective pion-quark-

antiquark coupling as a dipole form factor Lu & Ma, hep-ph/0504184

The only model that can fit the NA10 data at different beam energy.

Page 16: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

16

On the basis of time reversal arguments: f1T

┴(x,pT2)=0

Collins, NPB396, 161(1993) Final-state interaction from gluon exchange

between the quark and the spectator lead to nonzero Sivers function.Brodsky, Hwang & Schmidt, PLB530, 99(2002).

Final-state interaction can be reproduced by a prescription of the light-cone singularities or an extra gauge link at the spatial infinity for the parton distributions.Ji & Yuan, PLB543,66(2002).

Add final state interaction to the time reversal arguments:

f1T┴(x,pT

2)SIDIS=-f1T┴(x,pT

2)DY

Collins, PLB536, 43(2002)

Sivers Function

Page 17: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

17

Models for Sivers Function f1T┴

•Calculation fit with MIT bag model in the presence of final state interaction through one gluon exchange

Yuan, PLB575, 45(2003)[hep-ph/0308157].•Calculation in a spectator model with axial-vector diquarks in the presence of gluon rescattering

Bacchetta, Schaefer & Yang, PLB578,109(2004)[hep-ph/0309246]•Calculation in a light-cone SU(6) quark-diquark modelLu & Ma, NPA741,200 (2004).

- -

These calculations are before HERMES’ transverse data .

Page 18: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

18

An Intuitive Explanation of Sivers Asymmetry

M. Burkardt, Phys. Rev. D66(2002)114005[hep-ph/0209179].

Кu=1.67Кd=-2.03

Attractive FSIf1T┴,q Кq <0 f1T

┴,u f1T┴,d <0

Attractive FSI

The quark distribution in transverse polarized nucleon is deformed because the superposition of translational and orbital motion

misleads the photons in the x.

Page 19: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

19

Sivers Function Extraction from HERMES Data

Fits to the Hermes data “Prediction” of the Compass data

, ,1 1Assuming ( ) (1 ) ( ); ( ) (1 ) ( )

0.81 0.07, 1.86 0.28

u dT u T d

u dS

f x S x x u x f x S x x u x

S

Vogelsang and Yuan, Phys.Rev.D72(2005)054028 [hep-ph/0507266]

Striking flavor dependence of the Sivers function

Page 20: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

20

Comparing Sivers Functions from HERMES

Ref.[20] M.Anselmino et al, Phys.Rev.D72(2005)094007[hep-ph/0507181] Ref.[21] W.Vogelsang & F.Yuan, Phys.Rev.D72(2005)054028[hep-ph/0507266]Ref.[23] J.C.Collins et al, hep-ph/0510342

Satisfactory qualitative agreement between different models.

M.Anselmino et al, hep-ph/0511017

Page 21: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

21

Comparing Boer-Mulders Functions from Models

(a)MIT bag model: F. Yuan, Phys. Lett. B575,45(2003).

(b)Spectator model with axial-vector diquark: Bacchetta, Schaefer & Yang, Phys. Lett. B578,109(2004).

(c)Large-NC limit, P.V. Pobylitsa, hep-ph/0301236

Knowledge of the Boer-Mulders functions is very poor.

Z. Lu, B.Q. Ma and I. schmidt, Phys. Lett. B639(2006)494.

Page 22: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

22

Unpolarized Semi-Inclusive DIS

TWIST-2

Cahn Effect QED Modulation of f1D1 term due to intrinsic transverse momentum. Anselmino et al., PRD71(2005) 074006

[hep-ph/0501196].Add to 2(1-y+y2/2):

Page 23: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

23

Prediction of cos2φ in SIDISBarone, Lu and Ma, Phys. Lett. B632(2006)277[hep-ph/0512145].

The LT curve is proportional to h1┴, estimated from πN Drell-Yan.

LT

HT(Cahn Effect)

Predictions

Page 24: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

24

Azimuthal Asymmetries in SIDIS from CLAS

CLAS 5.7 GeV (preliminary)

M.Osipenko

e+X

Significant cosΦ, cos2Ф observed at large PT with CLAS at 5.7 GeV

V. Barone

H. Avakian, Z.-E.Meziani,K.Joo and B.Seitz, JLab proposal PR12-06-112

Prediction for CLAS

Page 25: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

25

FNAL E866/NuSea experiment

Completed Data analysis:dbar/ubar sea asymmetryDrell-Yan cross sectionlambda for J/Ψ production lambda for upsilon production

Page 26: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

26

Drell-Yan Cross Section from E866

J.C.Webb et al., hep-ex/0302019.

The calculation with NLO world PDFs agrees with data.

Page 27: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

27

Angular Distribution of E866 p-Cu Data

•J/: = 0.069±0.004±0.08•Drell-Yan (M=4~7 GeV): = 0.98±0.04T.H. Chang et al., PRL91, 211801 (2003)

• (1s),(2s+3s): plotted against PT and xP.•Drell-Yan: (M=8.1~8.45,11.1~15.0 GeV) =1.008±0.016±0.020C.N. Brown et al., PRL86, 2529 (2001)

Page 28: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

28

Dimuon Mass Distribution

Data used for cos2φ analysis:High Mass: dset7-39k (+ polarity)

dset8-85k (+ polarity) dset11-25k (- polarity)

Low Mass: dset5-68k (+ polarity)

Towell et al., Phys.Rev. D64 (2001) 052002

Target: Proton, Deuterium

Page 29: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

29

Comparison of data and simulation

Blue: simulation

Red: data

(dset8)

Page 30: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

30

In terms of Boer-Mulders function h1┴:

ν(π-Wµ+µ-X)~ valence h1┴(π) * valence h1

┴(p)

ν(pdµ+µ-X)~ valence h1┴(p) * sea h1

┴(p)

Azimuthal cos2Φ Distribution in pd Drell-YanL.Y. Zhu,J.C. Peng, P. Reimer et al., hep-ex/0609005.

Page 31: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

31

Full Angular Distribution in pd Drell-Yan

L.Y. Zhu,J.C. Peng, P. Reimer et al., hep-ex/0609005.

No significant violation of Lam-Tung relation in pd Drell-Yan.

Page 32: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

32

Angular Distribution in E866 pp and pd Drell-Yan

pp and pd Drell-Yan show similar angular distribution.

Preliminary

Prelim

inary

PreliminaryPrelim

inary

PT (GeV/c)

Page 33: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

33

Modeling Sea Boer-Mulders Functions Group led by Z. Lu, B.Q. Ma and I. Schmidt

Meson-baryon fluctuation model:

Predictions depend on the choice of valence Boer-Mulders functions(I,II).

Group led by L. Gamburg and G. GoldsteinTwo possible contributions to sea from the gauge link.

Preliminary

p(I)d(I)

d(II)p(II)

Probing the sea Boer-Mulders functions may constrain the valence ones.

Page 34: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

34

Summary

Large cos2 azimuthal asymmetry has been observed in unpolarized -induced Drell-Yan.

The are a few possible explanations including the non-trivial vacuum effect and the non-zero Boer-Mulders function . The latter is related to the Sivers function.

The unpolarized p-induced Drell-Yan data show only percent-level cos2φ azimuthal asymmetry. This may disfavor the flavor blind explanation such as vacuum effect.

More data on unpolarized Drell-Yan will be availble from the future experiments at FNAL, RHIC with proton beam, COMPASS with pion beam and especially GSI, complementary to the SIDIS data at JLab and HERMES.

Page 35: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

35

Backup Slides

Page 36: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

36

Hadronic Effect vs. QCD Vacuum Effect

D.Boer, hep-ph/0511025

Page 37: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

37

The Large-x Behavior of the Quark Distributions

Survive k┴ integration

k┴-dependent, T-odd

Brodsky & Yuan, hep-ph/0610236.

k┴ - dependent, T-

even

Sivers and Boer-Mulders functions are one power of (1-x) suppressed.

Page 38: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

38

Vacuum Contribution to Sivers Function f1T┴

Sizable instanton-induced QCD vacuum contribution to the Sivers function, adopting MIT bag model for the quark wave functions.Cherednikov, D'Alesio, Kochelev & Murgia Phys.Lett.B642:39-47,2006 [hep-ph/0606238].

thin: instantonthick:one-gluon

thin:HERMESthick:total

Page 39: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

39

Polarized Drell-Yan

Assuming u-quark dominance

Burkardt Relation

Page 40: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

40

Unpolarized Semi-Inclusive DIS

Ulrike Elschenbroich, HERMES thesis, 2006.TWIST-2

TWIST-3

Cahn Effect QED Modulation of f1D1 term due to intrinsic transverse momentum. Anselmino et al., PRD71(2005) 074006

[hep-ph/0501196].

Page 41: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

41

Azimuthal moments in SIDIS (1/Q2)

Page 42: 1 Probing the Nucleon Structure with Azimuthal Asymmetries --cos2φ distribution & Boer-Mulders F. Lingyan Zhu University of Illinois at Urbana-Champaign.

42

DY-experiments

E615 Fermilab 80-GeV -, 252-GeV + (1989) – 36000 muon pairs

NA10(1986) 194-GeV - tungsten target (145000 events)

QT-muon pair transverse momentum