Astr Physics

102
Σημειώσεις για το μάθημα της ΑΣΤΡΟΦΥΣΙΚΗΣ (Ειδικά Θέματα) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 20 Δεκεμβρίου 2006

description

αστροφυσικη

Transcript of Astr Physics

  • ( )

    20 2006

  • 2

  • 1 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.2.1 . . . . . . . . . . . . . . . . . . . . 41.2.2

    . . . . . . . . . . . . . . . . . . . . . . 51.3 . . . . . . . . . . . . . . 10

    1.3.1 . . . . . . . . . . . . . . . . . . . . . 121.3.2 : . . . . . . . . . . . . . . 131.3.3 . . . . . . . 14

    1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2 192.1 . . . . . . . . . . . . . . . . . . . . . . 20

    2.1.1 . . . . . . 202.1.2 . . . . . . . . . . . . . . . . . . . 212.1.3 - . . . . . . . . . . . . . . . . . . . 212.1.4 . . . . . . . . . . . . . . 22

    2.2 . . . . . . . . . . . . . . . . . 242.3 . . . . . . . . . . . . . . . . . . 25

    2.3.1 . . . . . . . . . . . . . . . . 252.3.2 . . . . . . . . . . . . . . . . . 26

    2.4 . . . . . . . . . . . . . . . . . . . . . . . . . 272.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 312.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3 333.1 . . . . . . . . . . . . . . . . . . . . . . . . 333.2 Jeans . . . . . . . . . . . . . . . . . . . . . . . . . 353.3 . . . . . . . . . . . . . . . . . . . . . 38

    i

  • ii

    3.4 . . . . . . . . 413.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 433.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4 454.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2 . . . . . . . . . . . . . . . . . . . . 454.3 . . . . . . . . . . . . . . . . . . 474.4 . . . . . . . . . . . 494.5

    . . . . . . . . . . . . . . . . . . . . . . . . . 504.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    5 575.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.2 . . . . . . . . . . . . 58

    5.2.1 . . . . . . . . . . . . . . . . . 585.2.2 . . . . . . 59

    5.3 . . . 605.3.1 . 605.3.2 . . . . . . . . . . . . . 62

    5.4 . . . . . . . . . . . . . . . . . 635.4.1 . . . . . . . . . . . . . 635.4.2 ,

    . . . . . . 645.5 . . . . . . . . . . . . . . . . . . . . . . . . 65

    5.5.1 . . . . . . . . . . . . . . . . . 655.5.2 . . . . . . . . . . . . . . . . . . . . 66

    5.6 . . . . . . . . . . . . . 685.6.1 . . . . . . 68

    5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 715.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    6 736.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.2 . . . . . . . . . . . . . . . . . 746.3 ; . . . . . . . . . . 77

    6.3.1 Zeeman . . . . . . . . . . . . . . . . . . . . 776.3.2 . . . . . . . . . . . . . . . . . 81

    6.4 (MHD) . . . . . . . . . . . . . . . . . 83

  • iii

    6.5 V irial . . . . . . . . . . . . . . . . . . . . . . . . . 866.6 Alfven . . . . . . . . . . . . . . . . . . . . . . . . . 896.7 90

    6.7.1 . . . . . . . . . . . . . 916.7.2 V irial . . . . . . . . . 92

    6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

  • iv

  • 1

    , .

    ;

    ., , , , , , .

    . , , .

    , .

    .

    ; , .

    .

    1

  • 2

    1.1: ( , , ).

    () () cads [ms

    1] 344 104 3 105 104...5 [kgm3] 1.21 103 10+5 1021 [m2s1] 1.5 105 10+2 102 1017

    1.2: SI.

    1 Mm = 106m1 AU = 1.5 1011 m1 pc = 3.1 1016 m1M = 2.0 1030 kg1 yr = 3.2 107 s1 Myr = 106 yr

    . 1AU( -) . kiloparsec (kpc). 10Kpc, , , (light year). (1yr = 3.16 107s) (M = 2 1030kgr).

    , .

    AGN SN BH WD (, )CV Cataclysmic Variable ( WD )

  • 1.1 3

    1.3: .

    6 Mm 70 Mm 700 Mm (CV) 10 1000 Mm 15 kpc

    1.4: .

    G 6.673 1011 m3 kg1 s2 Stefan-Boltzmann kB 5.67 108 kg s3 K4 R 8, 314 m2 s2 K1 c 3 108 m s1 0 4 107 V s A1 m1

    1.1

    . , , . .

    (,), () ( Lorentz ).

    : ( ) (); : ` (L) (`

  • 4

    1.1: E

    .

    E ~w ~u(~x, t). ( . (1.1) )

    `

    ` = (n)1

    n . 1015cm2 n 1019cm3, ` 104cm. n 10cm3 ` 1014cm ( -), 1019cm. .

    1.2

    1.2.1

    . ( (~x, t),

  • 1.2 5

    P (~x, t), T (~x, t), ~u(~x, t) .

    . Euler (~x = ~x0) , Langrange ( ) . (~x(t)). Euller

    dQ

    dt=

    (Q

    t

    )

    ~x0

    (1.1)

    LangrangeDQ(~x(t), t)

    Dt=

    (Q

    t

    )

    ~x0

    + ~u Q(~x(t), t). (1.2)

    (convectivederivative).

    2.1: V = xyz

    D(V )Dt

    = ( ~u)V. (1.3)

    (V =.),

    ~u = 0.

    2.2: (Ox)

    ~u = 0.

    .

    1.2.2

    .

  • 6

    1.2: m 2mvx.

    , , (yz) x. m 2px, (2pxn0vx), n vx ( . (1.2)). x 6 , (2pxn0vx) 6,

    P =2nmv2x

    6=

    nmv2x3

    .

    32kBT =

    mv2

    2

    PV = NkBT, (1.4)

    N = nV V kB Boltzmann . . = M/V = Nm/V

  • 1.2 7

    P =

    mkBT (1.5)

    (, )

    P =

    mkBT =

    R

    T (1.6)

    R . ( )

    , n. ()

    =A

    Z + 1

    .

    2.3: X , Y Z (Am = 2Zm, Zm >> 1)

    =1

    2X + 3Y4 +Z2

    .

    . m . Maxwell, Boltzman vx vx + dvx ( [;, ] ) ( )

    Maxwell-BoltzmannfM (vx) =

    (m

    2kBT

    )1/2exp

    [mv2x2KT

    ]. (1.7)

  • 8

    . fM

    fM (vx)dvx = 1.

    .

    P =

    2nv2xfM (vx)dvx = nkBT =N

    VkBT. (1.8)

    fM (v) =(

    m

    2kBT

    )3/2e

    (mv2

    2kBT

    ). (1.9)

    < v2 >=< v2x + v2y + v2z >= 3 < v2x >

    < v2 >=

    v2fM (v)d3v = 4

    0v2fM (v2dv)

    =3kBT

    m

    ( )

    U =12mn < v2 >=

    32nkBT.

    Vrms =

    < v2 > =(

    3kBTm

    )1/2.

    Vm =

    2kBT

    m. (1.10)

  • 1.2 9

    ( Vm )

    < v >= 4

    0vfm(v)(v2dv) =

    (8kBTm

    )1/2.

    : , . dQ , , dU dV dW = PdV . U = 32NkBT dU = (3/2)NkBdT.

    dU = dQ + dW = dQ PdV. (1.11)

    CV =(

    U

    T

    )

    V

    =(

    Q

    T

    )

    V

    =32NkB.

    CP =(

    Q

    T

    )

    P

    .

    (1.11)

    (Q

    T

    )

    P

    = CV + P(

    V

    T

    )

    P

    = CV + NkB (1.12)

    CP = CV + NkB.

    dQ S, dQ = TdS.

  • 10

    (dS = dQ = 0).

    .

    CV dT = PdV = NkBT dVV

    . (1.13)

    . (1.13) ln(TCV V NK)=

    TVNkBCV = TV 1 = . (1.14)

    = CV +NkBCV =CPCV

    = 5/3. . (2.13)

    P = k . (1.15)

    = 1, .

    c2s =P

    . (1.16)

    c2s = P/, , , c2s = RT/ = P/.

    .

    1.3

    , , , ,

    D~u

    Dt= P.

  • 1.3 11

    ~F ( )

    D~u

    Dt= P + ~F (1.17)

    Euler 1.5,

    1.5: V m, q, r, V , ~g, ~B, ~, , K .

    ~Fg = m~g Lorentz ~Fm = q~u ~B/cCoriolis FC = 2m~ ~u Fcf = m2r ~FD = 6K~u ~Fb = V ~g

    . Lorentz, Coriolis .

    (r)

    ~F = Gm(r)(r)r2

    er = Ug (1.18)

    Ug ,

    m(r) = r

    04r2(r)dr

    r .

  • 12

    1.3.1

    : m = V V , ( ),

    D(V )Dt

    = D(V )

    Dt+ (V )

    D

    Dt= 0

    . (1.3)

    (V )D

    Dt+ (V ) ~u = 0

    t+ (~u) = 0. (1.19)

    . (1.19) .

    : dm = V . . (1.17) (V ~u)

    (V )~uD~u

    Dt= (~F ~u ~u P )V

    D

    Dt(12u2V ) = (~F ~u ~u P )V.

    D(PV )Dt

    = (V )DP

    Dt+ P

    D(V )Dt

    = (V )(

    P

    t+ ~u P

    )+ P ( ~u)V

    D

    Dt

    [12u2 + P

    ]=

    (~F ~u + P

    t+ P ~u

    ). (1.20)

  • 1.3 13

    ~F =Ug

    D

    Dt

    [12u2 +

    P

    + Ug

    ]=

    (P

    t Ug

    t

    ). (1.21)

    ,

    (12u2 +

    P

    + Ug) = . (1.22)

    Bernouli.

    1.3.2 :

    . . .

    Fb = g

    g 10m/s2 = i e .

    = TT

    .

    60oC 300K / = 0.2. 1kgrm3 , 43 R

    3g Mg 500kgr

    43

    R3 = M

    R =(

    3M4

    )1/3= 9m.

  • 14

    100Km. , ( ) . 10 Krakatau, . . t =

    2Hg = 140s.

    .

    mdv

    dt= mg FD.

    FD = 6Kv, = 2 105kgm1s1 , K , m v . -

    0 = 43

    r3Kpg 6Kv

    p = 4 103Kgm3 . K = 1m

    v =22Kpg

    9 4 104m/s.

    t = H/v = 10 .

    1.3.3

    : . .

  • 1.3 15

    . .

    Oz (x, y, z) (x, y, z) .

    x = x cos + y siny = x sin + y cosz = z

    . = (~ = (0, 0, )) x, y, z xrot, yrot, zrot

    xrot = x + (~ ~r)xyrot = y + (~ ~r)yzrot = z.

    ~rrot = ~r + ~ ~r.

    (rrot)2 = (xrot)2 + (yrot)

    2 + (zrot)2)

    = (x)2 + (y)2 + (z)2 = (r)2.

    Lagrange

    L =m

    2(r)2 Ug = m2 (rrot)

    2 Ug = m2 (r2 + ~ ~r)2 Ug,

    L =m

    2[(x y)2 + (y x) + z2] Ug (1.23)

  • 16

    Ug . Langrange

    m(x y)m(y + x)my + Ugx

    = 0 (1.24)

    m(y + x) + m(x y) + mx + Ugy

    = 0 (1.25)

    mz +Ugz

    = 0 (1.26)

    .(1.24)-(1.26) )

    m~r = m~r ~ + 2m~r ~ + m~ (~r ~) Ug~r

    . (1.27)

    . (1.27) , , Coriolis (FC = 2m~r ~) (Fcf = m~(~r ~). . ( [;]).

    (. (1.19) ) (. (1.17) (x, y, z) (r, , z)( . (1.3) ).

    . , ( ).

    (r, ) z u(r, ) = ur(r, )er + (u(r, ) + r)e

    v = ur r

    + (u + r)1r

    .

  • 1.3 17

    1.3:

    = er r

    +er

    .

    ~u = urr

    +

    r

    (u + r) +

    ur

    r

    er . (er/ = e).

    r+

    1r

    r(rur) +

    1r

    ((u + r)) = 0 (1.28)

    ~u ~u = ur ~ur

    +u + r

    r

    ~u

    ( ).

    [~u ~u]r = ur urr

    +(u + r)

    r

    ur

    (u + r)2

    r

  • 18

    [~u ~u] = ur ((u + r)r

    +ur(u + r)

    r

    +(u + r)

    r

    (u + r)

    (r, , z)

    urt

    + ururr

    +(u + r)

    r

    ur

    (u + r)2

    r

    = Fr Pr

    (1.29)

    ut

    + ur((u + r)

    r+

    ur(u + r)r

    +(u + r)

    r

    u

    = F 1r

    P

    (1.30)

    r .

    1.4

    .

    1. (. 1.19 )

    t+(~u) = 0.

    2. (. 1.17)

    D~u

    Dt= P + ~F .

    3. ( )

    P = C

    P = RT .

  • 2

    ( . 2.1) . .. ( LS ), , . .

    2.1:

    19

  • 20

    .

    2.1

    , ,

    P = ~Fg, (2.1)

    .

    2.1.1

    2.1: 0 = 1.4gr/cm3 .

    ,

    dP

    dr= GM0

    R2

    dP |0Pc= GM0

    R2dr |R0

    Pc = GM0R

    = 2.7 1015dynes/cm2

    Pc = 1.41017dynes cm2. , . ( . 1.5)

    Pc =(

    0kBm

    )Tc (2.2)

  • 2.1 21

    (=0.62)

    Tc = 1.4 107K.

    2.1.2

    (. (2.1 . ~Fg = ~g, ~g . . (2.1)

    dP

    dz= g

    P = c2s

    c2sd

    dz= g

    1

    d

    dz= g/c2s

    (z) = 0ez/H (2.3)

    H = c2s/g.

    2.1.3 -

    ,

    Pg =Fg

    4r2=

    R0

    G(4r20dr)(43r

    30)4r2r2

    = 23G2R2 = 3

    8GM2

    R4

  • 22

    ( )

    P = nkBT =MkBT

    43R

    3mH.

    38

    GM2

    R4=

    MkBT43R

    3mH

    M 2kBTGmH

    R (2.4)

    M = 2 1033gr M. .

    2.1.4

    . , . dr, r (r),

    m(r)Gr2

    4r2(r)dr

    4R2dP

    dP .

    dP

    dr= Gm(r)

    r2, (2.5)

    m(r) = r

    04(r)2(r)dr. (2.6)

  • 2.1 23

    = ce

    (1 r

    Rc

    )

    ce . . (2.6)

    m(r) =43

    r3ce r4

    Rcce (2.7)

    M = m(Rc) =R3c3

    ce

    m(r) = M[4r3

    R3c 3r

    4

    R4c

    ]. (2.8)

    m(r) . (2.5)

    P = Pce G2ce[23r2 7

    9r3

    Rc+

    r4

    4R2c

    ](2.9)

    Pce P (Rc) = 0

    Pce =536

    G2ceR2c =

    5M2G4R4c

    .

    r

    P (r) =5G2ceR

    2c

    36

    [1 24r

    2

    5R2c+

    28r3

    5R3c 9r

    4

    5R4c

    ]. (2.10)

    (P (r) = nkbT (r)) r

    T (r) =mHP (r)kB(r)

    =536

    GmHkB

    ceR2

    [1 +

    r

    R 19r

    2

    5R2+

    9r3

    5R3

    ].

    . (2.5) (2.6) ( Bowers and Deeming, Vol. 1, Chapter 7 ).

  • 24

    2.2

    = csk ( ). (P = P0+P1, =0 + 1, u = u1 P0 = ~F

    1t

    + 0 u1 = 0 (2.11)

    u1t

    +10P1 = 0. (2.12)

    P = c2s

    P1 =(

    dP

    d

    )

    0

    1 = c2s1 (2.13)

    . (2.11), (2.12) (2.13)

    21t2

    c2s21 = 0 (2.14)

    . cs.

    1 = 10ei(~k~rt)

    .

    = csk (2.15)

    (). ( )

    cads =(

    5P3

    )1/2=

    (5kBT3mH

    )1/2(2.16)

    cs = 10(

    T104K

    )1/2 Kms .

  • 2.3 25

    2.3

    2.3.1

    ( . 6.18)

    W = 16220G

    3

    R0

    r4dr = 35

    GM2

    R.

    2.2: 6.18 Virial, L = 3.0 1033ergs/sec.

    dW

    dt 3

    5GM2

    R2dR

    dt

    Virial W = 2U ,

    dW

    dt 3

    5GM2

    R2dR

    dt 2L

    ( (U ) (L)

    dR

    dt 2.38 105cm/sec

    , . , .

    2.3: R0 >> R R0 R, ;

  • 26

    E = W +U , Virial W = 2U , E = U .

    U = 12W =

    12

    (35

    GM2

    R

    ) 1048ergs

    tk =1048ergs

    1033ergs/sec 107yrs

    , 109 .

    2.3.2

    ,

    41H1 2 He4 + 2e+ + 2e + Energy.

    41H1 4(1.0078amu) 2He4 4.0026amu (1 amu(atomic mass unit)=1/12 12C). M = 0.0286amu,

    0.02864.0312

    = 0.71%

    . (0.1M)

    E = 0.71 (0.1M)c2 = 1.27 1051ergs

    tn = t0L = 1010yrs

    .

  • 2.4 27

    2.4

    r V = r S

    [P (r + r) P (r)] S + GM(r)(r)Srr2

    = 0

    dP (r)dr

    = Gm(r)r2

    (r).

    M(r + r)M(r) = 4r2(r)r

    dM

    dr= 4r2(r)

    .

    E = U + Ug

    Virial 2U + Ug = 0

    E = U = Ug2

  • 28

    . dL(r)dr 4r2(r)(r),

    dL(r)dt

    = 4r2(r)(r)

    r , A = 4r2 r Prad = 13T

    4,

    dPraddr

    dr4r2

    [m2/kgr] L(r)/cdr.

    L(r)cdr = dPraddr

    dr4r2

    L(r) = 4r24c3

    T 3dT

    dr(2.17)

    1 2 ( . 2.2). 1(r) P1(r) 1 r+r, 2(r), P2(r). (r), P (r).

    P2 = P1(2

    rho1)

    ( ).

  • 2.4 29

    2.2:

    P2 = P2 = P (r + r) ' P1 +(

    dP

    dr

    )dr

    2 = 1

    (P2P1

    ) 1

    ' 1(

    1 +1P

    dP

    drdr

    ) 1

    2 ' 1 + 1P

    dP

    drdr

    2 2 > 0

    dP

    dr d

    dr> 0. (2.18)

    (P =kT/mp) =

    P

    T

    dT

    dP () = 4 < > (1 r/R). () () () ()

  • 32

    2. ()

    f(r) = P (r) + GM2(r)/8r4

    ( P (r) r M(r) r) . () .

    3. , dr/dt = 5r4. , , , () () () .

    4. (39.52AU ) ,

    5. M 0=.,

    6. () , V = V (r) Poisson

    1r2

    d

    dr

    (r2

    dV

    dr

    )= 4G

    1r

    d2

    dr2(rV ) = 4G

    () (=.) () () = rho0er, =.

  • 3

    . . .

    .

    3.1

    Rc . . .

    r = GMr2

    (3.1)

    r ,

    M =43

    R3c0

    33

  • 34

    0 . . (3.1)

    r

    Rc= 4

    3G0

    (r

    Rc

    )2. (3.2)

    ( = r/Rc, = t/t0, t0 =[(4/3)G0]1/2)

    d2

    d2= 2. (3.3)

    122 = 1 1. (3.4)

    = 0 = 1. . (3.4) , = cos2 (3.2)

    22 cos2 cos2 = 0. (3.5) . (3.5)

    12 +

    14

    sin 2 = 21/2. (3.6)

    . (3.1) . (3.6). . (3.6) = /2( = 0)

    tff =

    332G0

    . (3.7)

    tff . 21020Kgr/m3, tff 106 .

    . . (3.1)

  • 3.2 Jeans 35

    3.1: . (3.6).

    Rct2ff

    4G03

    Rc

    tff

    R3cGM

    . (3.8)

    . (3.7).

    3.2 Jeans

    . , , , P0, 0,0, u0 = 0 ( ).

    P = P0 + P1 = 0 + 1u = u1 = 0 + 1

  • 36

    0 ~u1 = 1t

    (3.9)

    ~u1t

    = (1 + P1/0) (3.10)21 = 4G1 (3.11)

    P1 = c2s1 (3.12)

    (3.9), (3.10)

    t( ~u1) = 21

    (c2s0

    )21 (3.13)

    t( ~u1) = 1

    0

    21t2

    . (3.14)

    21 . (3.11) (3.13) (3.14)

    (2 1

    c2s

    2

    t2+

    4G0c2s

    )1 = 0. (3.15)

    . (3.15)

    (2 1

    c2s

    2

    t2

    )1 = 0 (3.16)

    P0 = ~F . 3.15 3.16

    1 = 10ei(~k~rt)

    ( ~k ) . (3.15)

    D(~k, ) = 2 k2c2s + 4G0 = 0 (3.17) . (3.16)

    D(~k, ) = 2 k2c2s = 0. (3.18)

  • 3.2 Jeans 37

    3.2: . k kJ k > kJ = kcs.

    D(~k, ) D(~k, ) = 0 . . (3.17) , k2 < 4G0/c2s 2 < 0 ( = i)

    1 = 10etei~k~r.

    Jeans

    J =2cs4G0

    =2kJ

    (3.19)

    . 1020Kgr/m3, cs = 1Km/s J = 20pc.

    . (3.2) (1) k

  • 38

    , (2) k >> kJ = kcs.

    3.3

    VR(r) ( . (3.3).

    =VR(R + r) VR(R r)

    r.

    R = 150pc

    3.3: V (R) . .

    , = 2 1015sec1. Fc = m2r ,

    GMcR2c

    2Rc

  • 3.3 39

    =(

    McG

    R3c

    )1/2(3.20)

    . (3.20)

    >32

    4G= c = 3.6 1062gr/cm3

    . c = 1023g/cm3

    . 5 ( 2 1024g/cm3). , , 5-10 .

    3.1 Fc = m2r

    d2r

    dt2= GM

    r2+

    L2

    r3(3.21)

    L = r2= . . (3.4) . (3.21) L2/(GMcRc) = 0.1

    . (3.4) req = L2/GMc . (3.4).

  • 40

    3.4: .

    3.1: , , 10Km. , 25 .

    : , L = I,

    I =25MR2

    25MR2 =

    25MR2ff

    Tf =(

    RfR

    )2T = 0.1msec. (3.22)

  • 3.4 41

    3.4

    T .

    3.5:

    , , , Rc, . Virial ( . (6.16) ),

    12

    d2I

    dt2= 2U + Ug 4R3Pext (3.23)

    .

    Ug = 3M2c G

    5Rc

    ( . (6.18). (Pext). c = Mc/(4R3c)

    U =32

    MkBT

    mH.

  • 42

    12

    d2I

    dt2= 0

    . (3.23)

    Pext(R) =3kBTMc4mHR3c

    3M2c G

    20R4c. (3.24)

    . (3.6)

    3.6:

    Rc.

    RJ =[

    3

    1516

    kBT

    mHcG

    ]1/2(3.25)

    Jeans. R > RJ , RJ . , .

    W = U + Ug =3MckBT2mH

    3M2c G

    5Rc(3.26)

  • 3.5 43

    ( ) R < Rcr =(2/

    3)RJ . . (3.24) Rcr

    Pmax 3.14(

    kBT

    mH

    )4 ( 1M2c G

    2

    ). (3.27)

    Pmax. . (3.23), Pext > Pmax.

    Ug =35GM2

    [1

    Rf 1

    R

    ].

    .

    3.5

    . .

    : 0 = 1024g/cm3, B = 3G = 8 1016 2 1015sec1.

    1. ( ) .

    2. , , .

  • 44

    3.

    4.

    5. = kcs ( ).

    . . .

    3.6

    1. tff = [3/32G0]1/2 0 = 2 1024grcm3 4 1023grcm3. tff .

    2. r = 0.1pc, = 4 1023grcm3 = 2 1015s1 (30Kms1)

    3. E = U + W Jeans

    R2c = (4/3)R2J

    4. () T = 50K 0 = 8.4 1022grcm3. () T = 150K 0 = 2 1016grcm3. ,

  • 4

    4.1

    . ( ) . (jets) . , . - (Gamma Ray Bursts) .

    4.2

    R . .

    . :

    1. f(v). v > v, v

    45

  • 46

    .

    J =12n0(t)

    v

    f(v)v(v2dv) (4.1)

    Maxwellian v , . , :

    kT =GM

    R(4.2)

    T , . T 107K, 106K .

    2.

    dP (r)dr

    = GMR

    (r) (4.3)

    P = nkBT = mpkBT

    dP (r)dr

    = GMR

    mp

    kBTP

    dP (r)dr

    = P

    = (GMmp/kBTR)

    P (r) = P0e(1R/r) (4.4)

    r , P = P0e P (r ) = 105dynes/cm2

  • 4.3 47

    Pc = 1012dynes/cm2. ( )

    ,

    dM = 4r2(r)dr

    M = 4r2v(r)(r)

    1AU n0 = 7 cm3, 0 = n0mp v(r = 1AU) = 400km/sec M = 31014M/. .

    4.3

    1.

    t+(~u) = 0 (4.5)

    2.

    (

    t+ ~u ~u

    )~u = P Ug (4.6)

    3.

    t(E) +

    [~u

    (E +

    1P

    GM

    R

    )]= 0 (4.7)

    E = 12v2,

    .

    . ,

  • 48

    1r2

    d

    dr(r2v) = 0 (4.8)

    vdv

    dr= c2s

    dln

    dr GM

    r2(4.9)

    (4.8)

    dln

    dr= 2

    r dln|v|

    dr

    (5.2)

    (v2 c2s)dln|v|

    dr=

    2c2sr GM

    r2

    v > cs

    r =GM

    2c2s

    ( r = 0.1AU . (4.7) ( )

    B(r) =12v2(r) +

    1c2s

    GM

    r(4.10)

    r = r, v(r) = cs GM/r = 2c2s, ( = 5/3), B(r = r) = c2s. B(r = R) = GM/R ( v(r ) >> cs) B(r ) = v20/2, B = B(r )B(r = R) = 1/2v20 +GM/R

    . , . .

  • 4.4 49

    4.4

    (compact object ) , .

    M = 4r2(r)v(r) = const. (4.11)

    (r) = (mp + me)n0 ( n0 ) v(r) .

    ( ) V

    L = V n20 (4.12)

    = T mec2( , T ) .

    12v2(r) =

    GM

    r(4.13)

    (4.11) (4.13) n0

    n0 =M

    4r2(me + mp)(2GM/r)1/2

    (4.12) (mp >> me),

    L =(

    43r3

    )[M2

    (4r2)2m2p2GM

    r

    ]T mec

    2 =M2T mec

    2

    12m2p2GM(4.14)

    (4.14) L Eddington

  • 50

    LE 4GMcT

    M2T mec

    2

    24m2pGM

    M2E =962G2M2mp

    T mec(4.15)

    L

    LG=

    [T mec

    2

    24mpGM

    ]M2

    GMMr

    =(

    T mec2r

    24mpG2M2

    )M =

    4cME

    M

    ME= 104

    M

    ME(4.16)

    .

    4.5

    (r)t

    +1r2

    r(r2(r)v) = 0 (4.17)

    [v

    t+ v

    v

    r

    ]+

    r

    (kBT

    mp

    )+

    GM

    r= 0 (4.18)

    (E)t

    +1r2

    2

    r2

    [r2

    (5kBT2mp

    + E GMr

    )]= (, T ) (4.19)

    E = 12v2 + , (, T )

    (, T ) = 2T 1/2 (4.17), (4.18) (4.19)

    v(r, t),(r, t) T (r, t).

  • 4.6 51

    4.6

    1. (

    t = 0

    ) ,

    () r () r 1AU cs = 100km/sec() r

    2. (heat flux)

    ~F = T

    = 0(T/T0)5/2 T0, 0 .() ~F = 0

    T = T0(r/r0)2/7

    () P = kBT

    P = P0exp

    [7r05H0

    [(r

    r0

    )5/7 1

    ]]

    H0 (scale height)() .

    3. , Euler

    t+ (~v) = 0

    ~v

    t+ ~v ~v +p = 0

    t+ ~v + p

    ~v = 0

    :

  • 52

    t(vi) =

    xj(vivj + ijp)

    t(12v2 + ) =

    xj

    [vj

    (12v2 + + p

    )](4.20)

    .

    4. , ,

    t+

    x(vx) = 0

    vxt

    + vxvxx

    = c2s

    x(4.21)

    () = vx = v0() vx ei(kxt) = (k).() vx x. .

    5. 4,

    6. 4, .

    7. ( ) , : , . .() . (, )

  • 4.6 53

    ud

    dr(12u2 +

    1p

    GM

    r) = (r)

    udu

    dr= 1

    dp

    dr GM

    r2

    dM

    dt= 4(r)u(r)r2 (4.22)

    u , , p , , ( ) ( ). dMdt = const. ( , )() , ( )

    (u2 c2) 1u

    = something

    c2 =p

    ( u < c u > c r ):

    c2s = u2s =

    GM

    2rs+

    12

    (ru

    )

    s ( ) rs ( )() ,

    |dMdt| =

    rsrm

    4r2(r)dr/[GM

    rm+

    5 34( 1)

    GM

    rs+

    + 14

    (ru

    )

    s

    ]

  • 54

    () r > rm FUV , FUV ( , ). rm:

    rm

    dr 1

    |dMdt| = 4r

    3mFUV

    GM

    .( )

    8. r 0 = 3g/cm3 , 15km/sec. : = gez/H , g = 103g/cm3, z H = 10km (atmosphericscale height). z = 0 1 bar(106dynes/cm2). H , . .() . ( 2)() ( )() , , . (.. ) , ( ). 100-1000bar.

  • 4.6 55

    9. : . R m . . (R0, P0) (PV =)

    = (3 1)GMR30

  • 56

  • 5

    5.1

    ( ) . ,

    GMm

    r2= m2(r)r

    2(r) =GM

    r3

    Kepler (r) 1/r3/2, Kepler .

    10Km M, , mc2,

    GMm

    a GM

    ac2(mc2) 0.15mc2

    . .

    57

  • 58

    m, mE Eddington .

    LE 4GmpMcT

    1.3 1038(

    M

    M

    )erg/sec

    Gmm/r Eddington

    mE = 9.5 1011r0gr/sec mE 1017gr/sec.

    m , .

    5.2

    5.2.1

    , . , Virial , . . . .

    , , . , . .

    R R. , Stefan-Boltzmann, :

    Lring = 2 2rT 4R (5.1)

  • 5.2 59

    m , Virial :

    U = GMm2r

    (5.2)

    M , , , , . , :

    GMM

    2rRr

    4RRT 4D

    TD =(GMM

    8r3)1/4

    (5.3)

    5.2.2 .

    (5.3) :

    T (r) =(GMM

    8R3)1/4(R

    r

    )3/4= Tdisc

    (Rr

    )3/4

    Tdisc . :

    Tmax Tdisc (5.4)

    : M = 0.85M, R = 0.0095R M = 1016g s1 = 1.61010M yr1 :

    Tmax 2.62 104Kmax 1110 ALdisc 8.55 1032erg s1 = 0.22L

  • 60

    max Wien. : M = 1.4M, R = 10km M = 1017g s1 =1.6 109M yr1 :

    Tmax = 6.86 106Kmax = 4.23 ALdisc = 9.29 1036erg s1 2400L

    (5.5)

    , .

    5.3 .

    5.3.1 .

    , , m1 m2 . Kepler, :

    = (GM/r3)1/2 (5.6)

    . :

    E = GM2

    (m1r1

    +m2r2

    ) (5.7)

    , (5.6), :

    J = (GM)1/2(m1r1/21 + m2r

    1/22 ) (5.8)

    , :

    m1r1/21 r1 = m2r1/22 r2 (5.9)

  • 5.3 . 61

    (5.7) r2 (5.9) :

    E =GM

    2(m1r21

    r1 +m2r22

    r2)

    E = GMm1r12r21

    ((r1r2

    )3/2 1)

    (5.10)

    1 , 2, r1 , 1 . 1 , (5.10) r1r2 < 1 r1 , 1 . , , . , .

    , , , . . . , (5.6), . , , . , , . .

  • 62

    5.3.2 .

    , . , .

    , . w , . R-/2 , R+/2 . , :

    Jin = (R/2)2(R/2) = (R/2)2[(R) (/2)(d/dR)] (5.11)

    :

    Jout = (R+/2)2(R+/2) = (R+/2)2[(R)+(/2)(d/dR)] (5.12)

    R , :

    w[(R/2)2(/2)d/dR(R+/2)2(/2)d/dR] = wR2d/dR(5.13)

    . g , R, , :

    g = 2RR2d/dR (5.14)

    : = w. d/dR

  • 5.4 . 63

    , , .

    . , , , . , , . w, .

    5.4 .

    5.4.1 .

    , . , , . , , , . R R , :2RR : 2RRR2. :

    t(2RR) = UR(R, t)2R(R, t)UR(R+R, t)2(R+R)(R+R, t)

    Rt

    +

    R(RUR) = 0 (5.15)

    (5.15) R . UR , , . :

  • 64

    t(2RRR2) = UR(R, t)2R(R, t)R2(R)

    UR(R + R, t)2(R + R)(R + R, t)(R + R)2(R + R) g

    RR

    R

    t(R2) +

    R(RURR2) = 12

    g

    R(5.16)

    5.4.2 , .

    (5.15) (5.16) UR :

    Rt

    = R

    (RUR) t

    = 1R

    R

    ( 12(R2)

    g

    R

    )

    t

    =1R

    R

    ( 1((RGM)1/2)

    R

    (32

    R3(GM)1/2

    R5/2

    )

    t

    =3R

    R

    (R1/2

    R(R1/2)

    )(5.17)

    (5.6). (5.17) . ,R,t .

    (5.16),(5.17) :

    R

    t(R2) +

    R(RURR2) = 12

    g

    R

    R2[Rt

    +

    R(RUR)] + R

    t(R2) + RUR(R2) = 12

    G

    R

    RUR(R2) = 12G

    R(5.18)

    t = 0. (5.14) (5.18) UR:

  • 5.5 . 65

    UR = 3R1/2

    R[R1/2] (5.19)

    (5.19) , (5.17), .

    , M , :

    M = 2RUR (5.20)

    , , . , (5.17) . , , R :

    tvisc R2/

    5.5 .

    5.5.1 .

    . , , .

    . , , . , .

  • 66

    5.5.2 .

    , , , .

    . , . , :

    2 = 2 + c2sk2 2G|k| (5.21)

    ( Kepler = ). 2, . = 0. :

    Q =csk

    G< 1 (5.22)

    (5.10) . (5.10), . , , . , .

    , R, R R. :

    FG =GM

    (R R)2 GM

    (R)2(1 2 R

    R) (5.23)

    :

  • 5.5 . 67

    l R2 (5.24)

    :

    l(R R)2 (1 + 2

    R

    R) (5.25)

    :

    u2

    (R R)2 2(R R) 2R(1 + 3 R

    R) (5.26)

    , , (5.23),(5.26) :

    32R > 2GMR

    (R)3

    32R > 2GR/R R >

    2G32

    (5.27)

    , Jeans (. (5.22), k 1/DeltaR ) :

    R 1 (5.29)

    , , (5.22).

  • 68

    5.6

    5.6.1

    M . (z = 0). 2h :

    = hh

    dz 2h (5.30)

    , h(r) r. .

    :

    M = 2rU = . (5.31)

    J+ = M(GMr)1/2 J+ = M(GMrI)1/2 rI || 6 1, . , f r:

    (f)(2r 2h)(r) = M((GMr)1/2 (GMrI)1/2

    )(5.32)

    f M .

    :

    F (r) =3M8r2

    GM

    r

    [1 (rI

    r)1/2

    ](5.33)

  • 5.6 69

    F (r) .

    :

    1

    dP

    dz= GM

    r2z

    r(5.34)

    z r. P P z h :

    h (P

    )1/2( r3GM

    )(1/2) cs

    (5.35)

    , . f P (Black holes, white dwarfs and neu-tron stars, Shapiro and Teukolsky . 437). :

    f = P (5.36)

    1. . -.

    , 1M :

    kabs ' 0.64 1023 ([g cm3])(T [K])7/2cm2 g1 (5.37) Thomson :

    kscatt ' 0.40 cm2 g1 (5.38) ,

  • 70

    . k(, T ) :

    1k(, T )

    1kabs

    +1

    kscatt(5.39)

    . :

    P (, T ) ' 2kTmp

    +13aT 4 (5.40)

    . ( ) , . :

    F (r) cT4

    k, (r) > 1 (5.41)

    . :

    F (r) h(, T ), (r) < 1 (5.42)

    (,) (erg s1 cm3) . (5.30) (5.40) (5.41) (5.42)

    9 9 : (r), h(r), (r), ur(r),P (r), T (r), f(r), k(r) F (r) r, M M . 1973 Shakura and Sunyaev Novikov and Thorne. M , r. :

  • 5.7 71

    1. , r, .

    2. , r, , .

    3. , r, .

    5.7

    . . . , . , . , . .

    5.8

    1.

    2 = 2 + c2sk2 2G|k|

    ( (5.21

    2. (r, , z) .

  • 72

    (r, ) =

    (r, , z)

    ~u = urer + (u + r)e

    3. Navier-Stokes ( ) () ( R)

    c2s

  • 6

    6.1

    , . , (, ) , .

    . , .

    . . . , . : .

    , , , , ( ).

    ,

    73

  • 74

    ( ) () ( ).

    6.2

    . . 6.1 .

    6.1:

    . , . Faraday . . ~B B0. . CGS Gauss . 1.

  • 6.2 75

    (Gauss)

    10- 1000 10 0.6 HD 215441 32000 1012

    6.1:

    , . , : , ., , . , , . Ohm

    ~J =

    [~E +

    ~v ~Bc

    ](6.1)

    v .

    ~E = ~v ~B

    c(6.2)

    . , . . . v .

  • 76

    q, , ~F = q(~v ~B)/c, ( Lorentz). v B V olt/m ( m/s Gauss). . : ; , . , . .

    . . . (3 105G) 400Km/s, 1.2 103V/m. - 1.8 108V . . , 400 Km/s 3 106V .

    . . . . . , , . . , .

  • 6.3 ; 77

    . .

    , . , . .

    6.3 ;

    . Zee-man. . , . .

    6.3.1 Zeeman

    md~v

    dt= q

    [~E(~r, t) +

    ~v ~B(~r, t)c

    ]

    m , c . ( ~B = B0z)

    mvx =qB0c

    vy

    mvy = qB0c

    vx

    mvz = 0

  • 78

    B =qB0mc

    (6.3)

    Lar-mor. Coulomb . 0.

    mx = m20xmy = m20ymz = m20z

    ~B = B0z Lorentz ,

    mx = m20x +e

    cB0y

    my = m20y e

    cB0x

    mz = m20z

    z . x = aeit y =beit.

    a(20 2) ieB0mc

    b = 0

    b(20 2) + ieB0mc

    a = 0

    i ,

    (a ib)(20 2) (a ib)B = 0 (6.4)

  • 6.3 ; 79

    20 2 B = 0. B

  • 80

    Zeeman ( ).

    E = B0Jzg

    g = 1 +J(J + 1) L(L + 1) S(S + 1)

    2J(J + 1)

    Lande (Lande factor).

    L S spinJ Jz

    ( J ) (g, Jz) (g, J z)

    B =(

    e

    4cme

    )Jzg

    2B0

    Gauss

    B = 4.67 105g2B

    g = Jzg. (S = 0) g = 1. S = 0 Jz = (1, 0, 1) Zeeman (Zee-man triplet). , . .

  • 6.3 ; 81

    , Jz = 0 , . .

    Doppler . . 0.15T . , Zeeman , . .

    6.3.2

    . (v ' c) ( v ' 0) (1/), ( 6.3(. 6.3().

    (m0c2) 6.4.

    ( .)

    , ( ).

  • 82

    6.3: () . () .

    6.4: .

    fb() p

    p . Iv n(p1)/2.

  • 6.4 (MHD) 83

    , f() f() = fM + fb, fM Maxwell , . f() 6.5.

    6.5: .

    (opti-cally thick) I 5/2 (optically thin). , s = Rs/r, (Rs r ) Fm B1/20 5/2m 2s . m, s Fm , .

    6.4 (MHD)

    ( MHD ) (). .

  • 84

    .

    ~B V

    ~Fm =~j ~B

    c(6.5)

    ~j . . (6.5) Maxwell

    ~B = 4c

    ~j (6.6)

    ~E = 1c

    ~B

    t(6.7)

    ~B = 0 (6.8)( ), Ohm:

    ~j = [ ~E +~u ~B

    c] (6.9)

    (6.5) (6.6)

    Fm =( ~B) ~B

    4=

    14

    [( ~B ) ~B 1

    22B

    ](6.10)

    B = | ~B| . (6.6), (6.7) (6.9)

    ( ~B) = 4c

    [~j]

    =4c

    [ ~E + (~u~B

    c)]

    =4c2

    [B

    t+ (~u ~B)

    ]

  • 6.4 (MHD) 85

    ( ~B) = ~B( ~B) 2 ~B = 2 ~B .

    ~B

    t= (~uB) + 2 ~B (6.11)

    = c24 .

    .

    6.6: 4S u.

    4S (. 6.6), m =

    ~B d ~A.

    ~u m

    m =

    Sd ~A ~B +

    Sd ~A ~B. (6.12)

    , (c2/4)2B ' 0,

    ~B

    t= ~ (~u ~B). (6.13)

  • 86

    (6.13) (6.12) d ~A = ~ud~l( . 6.6)

    m =

    Sd ~A (~ (~u ~B)) +

    c

    ~B (~u d~l). (6.14)

    Stokes ~A ( ~B ~C) = ( ~A ~B) ~C m = 0, (frozen in), (collisionless plasma).

    6.5 V irial

    . Virial .

    . (1.17) ~r

    dm~r d

    2~r

    dt2=

    dm(~r ~f)

    ~r P dm

    f = F/ .

    ~r d2~r

    dt2=

    d

    dt

    (~rd~r

    dt

    ) d~r

    dt d~r

    dt=

    d2

    dt2

    (r2

    2

    ) u2.

    I =

    r2dm

    2 < T >=

    u2dm

  • 6.5 V irial 87

    dm~r d2~r

    dt2=

    12

    d2I

    dt2 2 < T > . (6.15)

    ~r P dm

    =(~rP )dV 3

    PdV

    =

    P (~r d~S) 3

    PdV

    ( ( (P~r) = ( ~r)P + (~r )P ~r = 3)

    Virial

    12

    d2I

    dt2= 2 < T > +3

    PdV +

    (~r ~f)dm

    P~r d~S (6.16)

    U =32

    PdV

    U ,

    12

    d2I

    dt2= 2 < T > +2U +

    (~r ~f)dm (6.17)

    ~r ~f .

    (fg) (fm).

    ~fg =

    dVG(r)~r|~r|3

  • 88

    (~f ~r)dm =

    Gm(r)dm(r)|~r| = Ug

    Ug .

    Ug = G R

    0

    43r

    3

    r4r2dr

    = 1622

    3

    R0

    r4dr = 1622

    3R5

    5

    = 35

    GM2

    R. (6.18)

    (~fm ~r)dm =

    dm

    ~r (~j B)c

    =

    dV~r (~j ~B)

    c

    =14

    dV ~r [( ~B) ~B]

    =

    dV

    4[~r ( ~B ) ~B 1

    2~r B2]

    =

    dV

    4

    [B2

    2+ [ ~B( ~B ~r)] B

    2

    2~r

    ]

    = m +

    S( ~B ~r)

    ~B d~S4

    SB2

    ~r d~S8

    m . ( Gauss.) Virial

    12

    d2I

    dt2= 2 < T > +2U + Ug + m +

    S( ~B ~r)

    ~B d~S4

    SB2

    ~r d~S8

    P~r d~S (6.19)

    Virial.

  • 6.6 Alfven 89

    6.6 Alfven

    3.2 . . MHD

    ~u

    t+ ~u ~u = c2s(B2/8) +

    14

    ( ~B ) ~B (6.20)

    t+(~u) = 0 (6.21)

    ~B

    t= (~u ~B). (6.22)

    = 0 + 1~u = ~u1~B = ~B0 + ~B1

    ~u1t

    = c2s1 (

    B0B18

    )+

    14

    ( ~B0 ) ~B1 (6.23)

    1t

    + (0 ~u) = 0 (6.24)

    ~B1t

    = ( ~u1 ~B0). (6.25)

    1 = 10ei(~k~rt)

    B1 = B10ei(~k~rt)

    u1 = u10ei(~k~rt)

    z ( ~B = B0ez,) (~k = kez) u1 =(u1x, 0, 0) B1 = (B1x, 0, 0). . (6.23) (6.25)

  • 90

    iu1x = ikB1x B080 (6.26)

    iB1x = ikB0u1x (6.27)

    B1x . (6.27) . (6.26)

    (2 k2(B20/(40))u1x = 0. (6.28)

    u1x ,

    2 = k2u2A (6.29)

    uA =

    B20/(40) Alfven. Alfven uA.

    Alfven . ( ) Alfven (~u1 ~k).

    6.7

    (B 106Gauss), .

    M =B2

    8V (106)2 (10pc)3 > Ug (6.30)

    , . . (6.7) )

  • 6.7 91

    6.7:

    (P = B2

    8 ) .

    . . .

    .

    6.7.1

    .(6.11)

    ~B

    t= (~uB) + 2 ~B.

    6.4 ( ( 0) ). , . (6.11)

  • 92

    ~B

    t 2 ~B. (6.31)

    ~B(~r, t)t

    ~B(~r, t)

    R2c

    Rc .

    ~B(~r, t) ~B(~r, t)et/D

    D = R2C/. .

    6.7.2 V irial

    Virial ( . (6.19) ) , . (3.24)

    Pext =14

    [GM

    2

    R4+

    2mR4

    + 332M

    R3

    ](6.32)

    2 = kBT/mH , = 1/(62), m = BR2, .

    GM2

    R4

    2m

    R4

    Mcr (

    )G1/2m

    Mcr 103M(

    B

    30G

    )(R

    2pc

    )2(6.33)

  • 6.8 93

    M . . (6.32)

    Pext =14

    [G

    R4(M2cr M2

    )+ 3

    2M

    R3

    ](6.34)

    M < Mcr , M >> Mcr .

    2 < T > .(6.16) .

    6.8

    .

    1. (. 1.19 )

    t+(~u) = 0.

    2. (. 1.17)

    D~u

    Dt= P + ~F .

    3. ( )

    P = C

    P = RT .

    4. ~F ( )

    ~F = Ug 18B2 +

    14

    ( ~B ) ~B

  • 94

    5.

    2Ug = 4G

    ~B

    t= (~uB) + 2 ~B.

    . Virial . . .

  • [1] , . , ., (1994), , , ( 1, 7 )

    [2] , ., , . , ., (1996), , 2000. ( 4 . !)

    [3] , ., (2000), , . ,.

    [4] Bowers, R. and Deeming, T., (1984), Astrophysics I, II ,Jones and Brtetlett Pub., Boston. ( . . 1, 21, 22 23 )

    [5] Carroll, B.W. and Ostlie, D.A., (1995) Introduction toModern Astrophysics, Addison Wesley, 2nd Ed. . 10, 11 12

    [6] Mandle, F., () , . , .

    [7] Shu, F., (1992), The Physics of Astrophysics, Volume II:Gass Dynamics, University Science Books, Mill Valley, Cal-ifornia.

    [8] , . (1986) ( 1 2 .)

    95

  • 96