•Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation...

25
Feb 13 2002 Electricity and Magnetism • Recap: – Confirmation of inverse square law – Superposition principle – Induction demo • Electric field

Transcript of •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation...

Page 1: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Electricity and Magnetism

• Recap:– Confirmation of inverse square law– Superposition principle– Induction demo

• Electric field

Page 2: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

x

y Angle α

x2

mg

F21

x1

Q: Is F21 ~ 1/r2 ?

F21~x2

r = x1+x2

x2 ~ 1/(x1+x2 )2

Feb 13 2002

Check:ln(x2) ~ -2 ln(x1+x2 )

ln(x1+x2 )

ln(x2)Slope = -2!

Page 3: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Superposition principle• Just add the forces on Q1 (as vectors)

Q3

Q1

Q2

F12

F13

F1,total

Page 4: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Superposition principle• Just add the forces on Q1!• Works for arbitrary number of charges:

Page 5: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Superposition principle

• What to do for many, many charges?– 109 e- on glass rod...

• Replace sum with integral!

Page 6: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Two spheres, 1 ping-pong ballAll conducting, neutral

1 2

Page 7: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Approach with charged glass rodCharges are induced on spheres

+++

++

++

++

+ +

1 2

Page 8: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Approach with charged glass rodCharges are induced on spheres

+++

+++

------

+++

++

++

++

+ +-- +

+++

+---

1 2

Page 9: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Net Force on ping-pong ball

+++

++

++

++

+ ++

+++

++++

+

------

--- -- +

+

1 2

Page 10: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Net Force on ping-pong ballAttracted to sphere 1

+++

++

++

++

+ ++

+++

++++

+

------

---

F-- +

+

1 2

Page 11: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Ping-pong ball touches sphere 1Picks up positive charge!

+++

++

++

++

+ + +++

+ ++

++

------

--

F-- +

+

1 2

Page 12: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Ping-pong now attracted to sphere 2

+++

++

++

++

+ + +++

+

------

--

++

+ -- +

+

F

1 2

Page 13: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Ping-pong touches sphere 2Picks up negative charge

+++

++

------

-- - -

++

F+++

++

++

++

+ +

1 2

Page 14: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Each time, there’s less charge to pick upEventually, process comes to a halt

+++

++

------

-- - -

++

F+++

++

++

++

+ +

1 2

Page 15: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Now remove rodCharge on 1 and 2 equal, oppositeUnstable equilibrium

+---

----

-+

++

+++

1 2

Page 16: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

One side wins, attracts ballBall picks up charge -> Repulsion

--- --

- --

+++

++

++

F

1 2

Page 17: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Touches other sphereContinue until both spheres neutral

+----- -

+++

+++

F

1 2

Page 18: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

The Electric Field

• What’s a field?• How’s the electric field defined?• Is it real?

Page 19: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Example of Scalar Field

• Each Location X connected to a Number: T(X)

Page 20: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Example of Vector Field

• Each Location X connected to a vector: v(X)

Page 21: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

The Electric Field

F(Q1,q,X1)F(Q1,q,X2)

Q1F(Q1,q,X3) F(Q1,q,X0)

qF(Q1,q,X4)

Page 22: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

The Electric Field

• Electric field is a Vector Field:

• For each location x, E gives Force on a ‘test charge’ q

• We can say: Space around charge Q is modified, such that ‘test charge’ q feels a force F=Eq

E(x) = F(x)/qdef

Page 23: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

The Electric Field

• Superposition principle for Forces – also true for Electric field (from Definition)

• Field from many charges is vector sum of individual fields – integral in limit of continous distributions

Page 24: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Visualizing Fields

• One way to do it– Color: Speed– Line orientation,

arrow: Direction

Page 25: •Recap - MIT OpenCourseWare · Feb 13 2002 Electricity and Magnetism •Recap: – Confirmation of inverse square law – Superposition principle – Induction demo •E lectric

Feb 13 2002

Visualizing the Electric Field

• Electric field ‘lines’– Michael Faraday, 1791-1867

• Cartoon of Strength and Direction of Field

• Line Density: Strength• Line Orientation: Direction

(for positive test charge q)