Alejandro D. Rey Materials Modeling Research Group ...

36
Materials Modeling Research Group Flow and Texture Modeling of Liquid Crystalline Materials Alejandro D. Rey Materials Modeling Research Group Department of Chemical Engineering McGill University Collaborators at Clemson Barr von Oehsen Christopher Cox Amod Ogale Dan Edie Rheology of complex fluids: modeling and numerics Ecole de Ponts-Peking University Workshop January 5-9 th 2009 Paris

Transcript of Alejandro D. Rey Materials Modeling Research Group ...

Page 1: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Flow and Texture Modeling of Liquid Crystalline Materials

Alejandro D. Rey

Materials Modeling Research Group

Department of Chemical Engineering

McGill University

Collaborators at ClemsonBarr von OehsenChristopher Cox

Amod OgaleDan Edie

Rheology of complex fluids: modeling and numericsEcole de Ponts-Peking University Workshop

January 5-9th 2009Paris

Page 2: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Classification

nematic cholesteric

homogeneous/achiralLiquid

periodic/chiral

smectic columnar

Sym

met

ry

brea

king

Crystal230 point groups

Orientational Order

orientational & 1D/2Dpositional order

disorder

Ani

sotr

opic

vis

co-

elas

tic

T C

T C

T C

50 liquidcrystal phases

order

Page 3: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Liquid Crystalline Precursors for Structural Materials

Page 4: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Carbonaceous Mesophases

n

MW=o(500g/mol)polycyclic aromatics

splay twist bend

Elasticity Topological Defects Rheology

1

10

100

1000

0.01 0.1 1 10 100

Shear Rate (1/s)

Visc

osity

(Pa

s) 305 C315 C325 C

Page 5: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Outline1. Introduction: Liquid crystals

2. Modeling Overview

3. Leslie-Ericksen Nematodynamics

4. Landau de Gennes Nematodynamics

5. Applications

Page 6: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Order Parameters: n and Q

( ) 1 3x5 ( / 3) ...4 4 x2

Ψ = + − +π π

u Q : uu I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

5

10

15

20

25

30

35

Teta

Dis

tribu

tion

Func

tion

T=150

T=296

T=408

T=427 23 1S= cos θ -2 2

n

Orientation n and Alignment S

S=0 S=1/2 S=1

⎛ ⎞⎜ ⎟⎝ ⎠

δQ=S nn-3

Quadrupolarorder

parameter Q

Orientation & alignment Q

Page 7: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Computational Flow-Modeling Paradigms F d: :

dtδ ⎛ ⎞Δ = − ⎜ ⎟δ ⎝ ⎠

QT AQ

s

Fddt

⎛ ⎞⎛ ⎞ −λ⎛ ⎞ ⎜ ⎟⎜ ⎟ = ⊗ δ⎜ ⎟ ⎜ ⎟⎜ ⎟ −λ⎝ ⎠⎜ ⎟ ⎜ ⎟δ⎝ ⎠ ⎝ ⎠

AT aQ β

Q

λ: coupling parameter

Flow-Induced Orientation/Back-Flow Cycle

dd t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ = ⊗⎜ ⎟ ⎜ ⎟⎜ ⎟ λ⎝ ⎠ ⎝ ⎠⎝ ⎠

AQ

Flow velocity

Flow-induced orientation

Q- velocity

Back-flow

s

F⎛ ⎞− λ⎛ ⎞ ⎛ ⎞ ⎜ ⎟= ⊗ δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟⎝ ⎠ δ⎝ ⎠

T

Q

( )sv ⇒ = ∇A v

d / dt F /⇒ δ δQ Q

defects

2o

ef

H EE ;R DR

τ ⎛ ⎞= = → =⎜ ⎟τ ⎝ ⎠

Page 8: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Parametric Space2

H * R= , , , ⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ξ ⎝ ⎠⎝ ⎠n e S

EE = γτ D = γτR

TUT

microfluidics

nanofluidics

( )eD 1=e(D 0)=

E

R

1/U

phase ordering

( )eD → ∞

FI orientation

FI molecular order

Elastic

Surface anchoring

Elastic

Page 9: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research GroupQuijada-Garrido et al., Macromolecules, (2000)

Flow-Alignment

Quijada-Garrido et al., Macromolecules, (2000)

Flow-aligning Non-flow-aligning

3 2

2 3

strainvorticity

α + αλ = =

α − α

0 1< λ <1λ >

Page 10: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Outline1. Introduction: Liquid crystals

2. Modeling Overview

3. Leslie-Ericksen Nematodynamics

4. Landau de Gennes Nematodynamics

5. Applications

Page 11: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Flow-Modeling

nQ

Page 12: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Leslie-Ericksen Nematodynamics

se sv + =Γ Γ 0 sv

svse

se x- ; x h n Γ h n Γ ==

s F d: :dt

δ ⎛ ⎞Δ = − ⎜ ⎟δ ⎝ ⎠nT A

n

s

Fddt

⎛ ⎞ ⎛ ⎞−λ⎛ ⎞⎜ ⎟ ⎜ ⎟= ⊗ δ⎜ ⎟⎜ ⎟ ⎜ ⎟λ −⎝ ⎠ ⎝ ⎠δ⎝ ⎠

AT an β

n

Page 13: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

2. Back-flowFour Dynamical Laws

vnv

1. Flow alignment

4. Three Visco-elastic Modes23

11 11

,⎛ ⎞

−⎜ ⎟⎝ ⎠

K αγη

( )22 1, 0−K γ22

33 12

,⎛ ⎞

−⎜ ⎟⎝ ⎠

K αγη

n

n

2η3η

n

η1 > η3 > η2

3. Viscous Anisotropy

3α2α

Page 14: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

• Flow alignment

• Shear viscosities

• Back-flow

• Secondary flow

• First normal stress difference

• Shear thinning

Leslie-Ericksen Nematorheology

Page 15: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Rheological Characterization

1

10

100

1000

0.01 0.1 1 10 100

Shear Rate (1/s)

Visc

osity

(Pa

s) 305 C315 C325 C

-150

-100

-50

0

50

100

0.01 0.1 1 10 100

Shear Rate (1/s)

Firs

t Nor

mal

Str

ess

Diff

eren

ce (P

a)

315 C

0.01

0.1

1

10 100 100 0

Er, Ericksen numb er

η

U=3.5R=10000β=−1.3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

10 100 1000

Er, Ericks en number

U=3.5R=10000β=−1.3

shear viscosity 1st normal stress difference

anisotropy nonlinearity

Page 16: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Landau-de Gennes Nematodynamics

( )s F ˆ: :δΔ = −

δT A Q

Qs

Fˆ c

⎛ ⎞−β⎛ ⎞ ⎛ ⎞ ⎜ ⎟= ⊗ δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−β⎝ ⎠ ⎜ ⎟⎝ ⎠ δ⎝ ⎠

AaTQ

Q

Flow velocity

FIO

Q- velocity

BFdefects

E

R

U

Page 17: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Landau-de Gennes Nematodynamics

( )

( ) ( ){ }( )( )

( ) ( ){ }

( ) ( )

t * * * * * *1 2

* * * * * *4

* * T *2

1

Er 2 : 3

Er : :

3 2 2 : U 3 33 : :

2UL3 3. . :

U R L

⎛ ⎞⎧ ⎫= ν + ν ⋅ + ⋅ − +⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

⎡ ⎤ν + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ +⎣ ⎦

⎡ ⎤⎧ ⎫− β −β ⋅ + ⋅ − +⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤β + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅⎣ ⎦

+ − + −∇ ∇ − ∇

t A Q A A Q Q A I

A Q Q A Q Q Q A Q Q Q A Q Q A I

H H Q Q H H Q I

H Q Q H Q Q Q H Q Q Q H Q Q H I

H Q Q H Q Q ( ) ( )* T ⎡ ⎤

⋅ ⋅ ∇⎢ ⎥⎣ ⎦

Q Q

Erast tttt ++=

Flow velocity

FIO

Q- velocity

BFdefects

s

ˆ c−β⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟β⎝ ⎠ ⎝ ⎠⎝ ⎠

a ATHQ

Page 18: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

LdG Nematorheology

2* 2 2 2

1 4

22

2

22

3

8 82 ( )9 9 12

1 (2 )3 2

1 (2 )3 2

SS S S

SS S S

SS S S

α η ν β

α η β

α η β

⎛ ⎞= − − +⎜ ⎟

⎝ ⎠⎛ ⎞

= − − + −⎜ ⎟⎝ ⎠⎛ ⎞

= − + −⎜ ⎟⎝ ⎠

2* * * 2 2

4 1 2 42 1 4 (1 )3 3 9 4

SS S Sα η ν ν ν β⎛ ⎞

= − + + − −⎜ ⎟⎝ ⎠

* 2 2 25 2

* 2 2 26 2

1 1 1(2 ) (4 )3 2 31 1 1(2 ) (4 )3 2 3

S S S S S S S

S S S S S S S

α η ν β β

α η ν β β

⎛ ⎞= + + − + − −⎜ ⎟⎝ ⎠⎛ ⎞= − + − + − −⎜ ⎟⎝ ⎠

Trial by Fire

( )S6

SS24 2−+β=λ

( )1 2 3 1 2 1 28 C Cη + η + η = + η − η 2.77<C2<3.84

Hess-Doi models respect reality only if λ<0 for rods!2 *

22 *

2

8 16C4

β + ν=

ν + β( )24 2

06

S SS

βλ

+ −= >

LdG LE

Page 19: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Flow-Modeling

Page 20: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Topological Defects

Page 21: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Point Defects

Brooks-Taylor Spherulites Micron-range Gas Bubbles

bubble-defect dipole:

d=1.2-1.5 R

radial hyperbolic

Page 22: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Disclination Lines in c/c Composites

( 2) / 2S N= − −Zimmer’s Rule:

singular core(3,5,7..)

escape core(4,6,..)

Poincare theorem

Page 23: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Defect-Defect Reactionssplitting: M=+1 2 M=+1/2

annihilation:1/2+(-1/2)=0

asymmetric annihilation with HI

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 .1 5

0 .2 0

0 .2 5

0 .3 0

0 .3 5

0 .4 0

0 .4 5

is o tro p ic

( )0.65T = 3 / 8 - H / - 37

1 2M MFd

Page 24: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Defect Rheo-physics:Nucleation1. Frank-Reid loop emission

1λ >

2. Loop splitting

3. Heterogeneous re-orientation

1c

c

N E EE E

∝ − ⇒ ∝−

Page 25: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Defect Rheo-physics: Coarsening Rate f(De)

1. defect-interface annihilation

2. defect-defect annihilation

⋅ 0.2T = a - b Dem

onod

omai

npolydomain

Page 26: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Outline1. Introduction: Liquid crystals

2. Modeling Overview

3. Leslie-Ericksen Nematodynamics

4. Landau de Gennes Nematodynamics

5. Applications

Page 27: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Multiscale Flow-Modeling

Page 28: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group( )oωτ 1≈o

Lima and Rey , Rheologica Acta (2005), W.R. Burghardyt , JOR (1991)

MONOCRYSTAL LINEAR VISCOELASTICITY( ) 2 3: α α= + +

visco-elasticviscous

τ η n A nN Nn

( ) 12 1 λ

2= − +

γα

( ) ( ) δF-δ

⎧ ⎫= = ⋅ −⎨ ⎬⎩ ⎭

N ω w I - nn A.nn

λ

( )s= ∇A v

2 22

1 33 22

θ,

θ

⎧ = +⎪⎨ ∂

= −⎪ ∂⎩K

y

τ η γ α

θγ α γ

1 32

1 11 32

θ,

θ

⎧ = +⎪⎨ ∂

= −⎪ ∂⎩K

y

τ η γ α

θγ α γn

1ηSPLAY

BEND

n

( ) 13 1 λ

2= −

γα

0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000DIMENSIONLESS FREQUENCY, ( )

1.3

1.4

1.5

1.6

LOSS

TAN

GEN

T, (

)

ω

δ

~

π/2

Loss

Ang

l e

Viscous

Viscoelastic

θ=0 2

2 =0∂∂y

θ

?

Page 29: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Polycrystal Linear Viscoleasticity: G’ and G”

s F d: :dt

δ ⎛ ⎞Δ = − ⎜ ⎟δ ⎝ ⎠nT A

n

Page 30: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Multiscale Flow-Modeling

Page 31: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Monodomain Shear Rheology of CMss

ˆ c−β⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟β⎝ ⎠ ⎝ ⎠⎝ ⎠

a ATHQ

theoryexperiments

( )24 21

6 S SS

βλ

+ −= < −

Page 32: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Shear Flow-Alignment and Texturing

Experiments Simulations

transient

steady

Page 33: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Structuring by Flow Through Screens

Experiments

Nucleation of Disclination Latticesn-field RPOM

( ) ( )arg 1/ 4 4 1/ 2 2Ch e = + × + − ×

Page 34: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Fiber Texture EngineeringHigh T Low T

<

Hea

t tra

nsfe

r app

l.

elastic instability

Zig-Zag

ribbon

ribbon

circular

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 .1 5

0 .2 0

0 .2 5

0 .3 0

0 .3 5

0 .4 0

0 .4 5

is o tro p ic

R/ξ

( )0.65T = 3 / 8 - H / - 37

Page 35: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

Computational Textured NematodynamicsFlow velocity

FIO

Q- velocity

BFdefects

Numerical Scheme

−∇ ⋅ (∇v + ∇vT ) + ∇p + (1− α )∇ ⋅ (G + GT ) = ∇ ⋅τ LCP

where τ LCP = τ total − α(G + GT ) and 0 ≤ α ≤ 1

∇ ⋅ v = 0 G − ∇v = 0

Page 36: Alejandro D. Rey Materials Modeling Research Group ...

Materials Modeling Research Group

OutlookModels- Need further development in molecular models to remove current

inconsistencies in fitting shear viscosities- Further develop interfacial and contact line nematodynamics- Stress boundary conditions for outflows- Incorporate couple stresses

Computation

- Multiscale multidimensional DNS- Resolve banded texture enigma