ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089...

48
ABRACADABRA: Detecting axion dark matter Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler, PRL 2016 ABRA-10 cm collaboration

Transcript of ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089...

Page 1: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRA:Detecting axion dark matter

0902.1089

Fermi (NASA)

1406.0507

Ben SafdiMIT / University of Michigan

Y. Kahn, B.S., J. Thaler, PRL 2016

ABRA-10 cm collaboration

2017

Page 2: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axions

-3-12 9 12log10(ma/eV)

-22 27

I Axion solves strong CP problem (neutron EDM)

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I Axion couples to QED

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Axion (field) can make up all of dark matter

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 3: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axions

-3-12 9 12log10(ma/eV)

-22 27

I Axion solves strong CP problem (neutron EDM)

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I Axion couples to QED

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Axion (field) can make up all of dark matter

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 4: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axions

-3-12 9 12log10(ma/eV)

-22 27

I Axion solves strong CP problem (neutron EDM)

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I Axion couples to QED

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Axion (field) can make up all of dark matter

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 5: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axions

-3-12 9 12log10(ma/eV)

-22 27

I Axion solves strong CP problem (neutron EDM)

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I Axion couples to QED

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Axion (field) can make up all of dark matterPeccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 6: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRAPATRAS 2017 — May 16,2017 Reyco Henning

Motivation

• Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter

• Motivated by Strong CP Problem and String Theory

• Created via realignment mechanism

• Couples weakly to E&M:

!3

L � �1

4ga��aFµ⌫ F̃

µ⌫

PDG

Page 7: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRAPATRAS 2017 — May 16,2017 Reyco Henning

Motivation

• Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter

• Motivated by Strong CP Problem and String Theory

• Created via realignment mechanism

• Couples weakly to E&M:

!3

L � �1

4ga��aFµ⌫ F̃

µ⌫

PDG

Page 8: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRAPATRAS 2017 — May 16,2017 Reyco Henning

Motivation

• Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter

• Motivated by Strong CP Problem and String Theory

• Created via realignment mechanism

• Couples weakly to E&M:

!3

L � �1

4ga��aFµ⌫ F̃

µ⌫

PDG

Page 9: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRAPATRAS 2017 — May 16,2017 Reyco Henning

Motivation

• Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter

• Motivated by Strong CP Problem and String Theory

• Created via realignment mechanism

• Couples weakly to E&M:

!3

L � �1

4ga��aFµ⌫ F̃

µ⌫

PDG

Page 10: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter modifies Maxwell’s equations

I Recall axions also couple to QED:

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Magnetoquasistatic approximation: new electric currentthat follows B-field lines

∇×B = gaγγB∂a

∂t

I Locally: a(t) ≈ a0 sin(mat) and1

2m2aa0

2 = ρDM

I Jeff = gaγγ√

2 ρDMB sin(mat)

Page 11: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter modifies Maxwell’s equations

I Recall axions also couple to QED:

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Magnetoquasistatic approximation: new electric currentthat follows B-field lines

∇×B = gaγγB∂a

∂t

I Locally: a(t) ≈ a0 sin(mat) and1

2m2aa0

2 = ρDM

I Jeff = gaγγ√

2 ρDMB sin(mat)

Page 12: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter modifies Maxwell’s equations

I Recall axions also couple to QED:

L = −1

4gaγγaFµνF̃

µν gaγγ ∝αEM

fa

I Magnetoquasistatic approximation: new electric currentthat follows B-field lines

∇×B = gaγγB∂a

∂t

I Locally: a(t) ≈ a0 sin(mat) and1

2m2aa0

2 = ρDM

I Jeff = gaγγ√

2 ρDMB sin(mat)

Page 13: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter generates magnetic fluxY. Kahn, B.S., J. Thaler, PRL 2016

a

h

R

B0

r

Superconducting pickup loop

Page 14: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Two readout strategies

LpLi

L

M

LLpLi

M

CR

Δω

Broadband Resonant

Better at high frequencyBetter at low frequency

Page 15: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

10�12 10�11 10�10 10�9 10�8 10�7 10�6 10�5

ma [eV]

10�16

10�14

10�12

10�10

10�8

g a��

[GeV�

1]

102 103 104 105 106 107 108 109f [Hz]

CAST

IAXO

AD

MX

KSVZ

Page 16: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm (happening now!)

10�12 10�11 10�10 10�9 10�8 10�7 10�6 10�5

ma [eV]

10�16

10�14

10�12

10�10

10�8g a��

[GeV�

1]

ABRA-10cm (Broad.)

102 103 104 105 106 107 108 109f [Hz]

CAST

IAXO

AD

MX

KSVZ

LpLi

L

M

LLpLi

M

CR

Δω

Broadband Resonant

Better at high frequencyBetter at low frequency1 month B = 1 T

Page 17: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm (happening now!)

10�12 10�11 10�10 10�9 10�8 10�7 10�6 10�5

ma [eV]

10�16

10�14

10�12

10�10

10�8g a��

[GeV�

1]

ABRA-10cm (Broad.)

ABRA-10cm (Res.)

102 103 104 105 106 107 108 109f [Hz]

CAST

IAXO

AD

MX

KSVZ1 month

B = 1 T

LpLi

L

M

LLpLi

M

CR

Δω

Broadband Resonant

Better at high frequencyBetter at low frequency

Page 18: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-Gen2

10�12 10�11 10�10 10�9 10�8 10�7 10�6 10�5

ma [eV]

10�16

10�14

10�12

10�10

10�8g a��

[GeV�

1]

ABRA-10cm (Broad.)

ABRA-100cm (Broad.)

ABRA-300cm (Broad.)

ABRA-10cm (Res.)

ABRA-100cm (Res.)

ABRA-300cm (Res.)

102 103 104 105 106 107 108 109f [Hz]

CAST

IAXO

AD

MX

KSVZ1 year

B = 5 T

Page 19: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

The MIT prototype: ABRACADABRA-10 cm

I ABRACADABRA: A Broadband/Resonant Approach toCosmic Axion Detection with an Amplifying B-field RingApparatus

I People (LNS+CTP, PSFC, Princeton, UNC, UMich): JanetConrad, Joe Formaggio, Sarah Heine, Reyco Henning,Yoni Kahn, Joe Minervini, Jonathan Ouellet, Kerstin Perez,Alexey Radovinsky, B.S., Jesse Thaler, Daniel Winklehner,Lindley Winslow

I Funded by the NSF!

Page 20: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRACADABRA-10 cm at MIT

ABRACADABRAPATRAS 2017 — May 16,2017 Reyco Henning

ABRACADABRA-10cm

!16

Cosmic Axion Detection with anAmplifying B-field Ring Apparatus

Ben SafdiMassachusetts Institute of Technology

2015

Counter-wound superconducting coils.

12 cm

12 cmBmax ≈ 1 T

Super conducting pickup cylinder

Page 21: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm

Lindley Winslow (PI)

Jonathan Ouellet (postdoc)

Page 22: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm

Page 23: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm

Page 24: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Light bosonic dark matter future

I MIT: ABRA-10 cm followed by ABRA-1 m (B ∼ 5 T)

I Axions and light bosonic dark matter well motivated bystrong-CP problem and high-scale physics (e.g.,compactified string theory)

I New ideas to search for ultra-light scalars, dark-photons,etc. (laboratory experiments + astrophysics)

I e.g., CASPEr experiment (fa ∼ 1017 − 1019 GeV)I Black Hole superradiance (fa ∼ 1017 − 1019 GeV)I Florida LC circuit (fa ∼ 1015 GeV)I ADMX-HF (fa ∼ 1011 GeV)I CMB (isocurvature + ∆Neff)I DM-radio (dark photons)

Page 25: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Questions?

Page 26: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion backup

Page 27: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter generates magnetic flux

a

h

R

B0

r

Superconducting pickup loop

I Estimate B-field induced through pickup loop(r = a = h = R)

I Axion effective current: Ieff ∼ R2Jeff

I B ∼ Ieff

R∼ Rgaγγ

√2 ρDMB0 sin(mat)

I fa = 1016 GeV, B0 ∼ 5 T, R ∼ 4 m: B ∼ 10−22 T (KSVZ)

Page 28: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Axion dark matter generates magnetic flux

a

h

R

B0

r

Superconducting pickup loop

I Estimate B-field induced through pickup loop(r = a = h = R)

I Axion effective current: Ieff ∼ R2Jeff

I B ∼ Ieff

R∼ Rgaγγ

√2 ρDMB0 sin(mat)

I fa = 1016 GeV, B0 ∼ 5 T, R ∼ 4 m: B ∼ 10−22 T (KSVZ)

Page 29: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Broadband estimate

LpLi

L

M

R

I Example from MRI application: (Myers et. al. 2007)I B-field sensitivity: S1/2

B ≈ 6.4× 10−17 T/√

HzI R ≈ 3.3 cm

I Scale to R ≈ 4 mI S

1/2B ≈ 5× 10−20 T/

√Hz

I t = 1 year interrogation time for GUT scale axionI Coherence time: τ ∼ 2π/(mav

2) ∼ 10 s (v ∼ 10−3)I S/N = 1 for B = S

1/2B (tτ)−1/4 ∼ 10−22 T

Page 30: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Broadband estimate

LpLi

L

M

R

I Example from MRI application: (Myers et. al. 2007)I B-field sensitivity: S1/2

B ≈ 6.4× 10−17 T/√

HzI R ≈ 3.3 cm

I Scale to R ≈ 4 mI S

1/2B ≈ 5× 10−20 T/

√Hz

I t = 1 year interrogation time for GUT scale axionI Coherence time: τ ∼ 2π/(mav

2) ∼ 10 s (v ∼ 10−3)I S/N = 1 for B = S

1/2B (tτ)−1/4 ∼ 10−22 T

Page 31: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Broadband estimate

LpLi

L

M

R

I Example from MRI application: (Myers et. al. 2007)I B-field sensitivity: S1/2

B ≈ 6.4× 10−17 T/√

HzI R ≈ 3.3 cm

I Scale to R ≈ 4 mI S

1/2B ≈ 5× 10−20 T/

√Hz

I t = 1 year interrogation time for GUT scale axionI Coherence time: τ ∼ 2π/(mav

2) ∼ 10 s (v ∼ 10−3)

I S/N = 1 for B = S1/2B (tτ)−1/4 ∼ 10−22 T

Page 32: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Broadband estimate

LpLi

L

M

R

I Example from MRI application: (Myers et. al. 2007)I B-field sensitivity: S1/2

B ≈ 6.4× 10−17 T/√

HzI R ≈ 3.3 cm

I Scale to R ≈ 4 mI S

1/2B ≈ 5× 10−20 T/

√Hz

I t = 1 year interrogation time for GUT scale axionI Coherence time: τ ∼ 2π/(mav

2) ∼ 10 s (v ∼ 10−3)I S/N = 1 for B = S

1/2B (tτ)−1/4 ∼ 10−22 T

Page 33: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm: vertical cut

test wire

Page 34: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

ABRA-10 cm: pickup cylinder

Superconducting pickup cylinder

Cut cylinder so current returns through

leads

Pickup loop leads

Page 35: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 36: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 37: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 38: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 39: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 40: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 41: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Magnetic field sensitivity calculation

I B(t) = B0 sin[ω0t+ φ(t)] +Bn(t)

I φ(t): evolves over coherence time τ

P (ω) ≡ 1√T

∫ T

0dtB(t) sin(ωt) = P0(ω) + Pn(ω)

I Spectral density: limT→∞

|Pn(ω)|2 → S1/2B (ω) [T /

√Hz]

I T < τ :I |P0(ω0)|2 ∝ B2T → B2 = S

1/2B (ω0)/T

I T > τ

I |P0(ω0)|2 ∝ B2

T× Tτ = B2τ

I But, line-width is broad and can resolve N = T/τ differentfrequencies

I B2 = S1/2B (ω0)/τ/

√N = S

1/2B (ω0)/

√Tτ

Page 42: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

Complementary proposals foraxion dark matter experiments

Page 43: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

CASPEr: oscillating neutron EDM

Laxion = −(θ̄ +

a

fa

)g2

32π2GµνG̃

µν

dn(t) = gd a(t) , gd ≈2.4× 10−16 e · cm

fa

CASPEr: NMR detection

• Measures coupling to through nucleon spin • Measurement taken in external E and B fields • Sensitivity to much lower masses! Win by volume

Gµ⌫eGµ⌫

SN 1987A

New Force

QCD Axion

ALP DM ADMX

10!14 10!12 10!10 10!8 10!6 10!4 10!2 100

10!20

10!18

10!16

10!14

10!12

10!10

10!8

10!6

10!4

102 104 106 108 1010 1012 1014

mass !eV"

g aNN!GeV

!1 "

frequency !Hz"

Figure 7

Sensitivity of the CASPEr-Wind proposal. ALP parameter space in pseudoscalar coupling of axion

to nucleons Eqn. 20 vs mass of ALP. The purple line is the region in which the QCD axion maylie. The width of the purple band gives an approximation to the axion model-dependence in this

coupling. The darker purple portion of the line shows the region in which the QCD axion could beall of the dark matter and have fa < Mpl as in Figure 8. The green region is excluded by SN1987A

from (35). The blue region is excluded by searches for new spin dependent forces between nuclei.

The red line is the projected sensitivity of an NMR style experiment using Xe, the blue line is thesensitivity using 3He. The dashed lines show the limit from magnetization noise for each sample.

The ADMX region shows the part of QCD axion parameter space which has been covered (darker

blue) (52) or will be covered in the near future (lighter blue) by ADMX. For full details see (68).

4. Searches for Solar Axions

4.1. Solar Axions

Axions can be produced in the solar interior by the Primako↵ conversion of plasma photons

into axions in the Coulomb field of charged particles via the generic a�� vertex (88), giving

rise to a solar axion flux at the Earth surface (89) of �a = g210 3.75 ⇥ 1011 cm�2 s�1

(where g10 = ga��/10�10 GeV�1), which corresponds to a fraction of the solar luminosity of

La/L� = g2101.85⇥10�3. These axions have a broad spectral distribution around 1�10 keV,

determined by the solar core’s temperature, and usefully parameterized by the following

expression (89):

d�a

dE= 6.02 ⇥ 1010 cm�2 s�1 keV�1 g2

10 E2.481e�E/1.205 (E in keV) (22)

that is plotted in Fig. 9. This is a robust prediction involving well-known solar physics and

16 Peter W. Graham, Igor G. Irastorza, Steven K. Lamoreaux, Axel Lindner, and Karl A. van Bibber

dn = gd

p2⇢DM

macos(mat)L � � i

2gdaN�µ⌫�5NFµ⌫

SQUIDpickuploop

�Bext

�M

�E�,�v

Figure 6

CASPEr setup. The applied magnetic field ~Bext is colinear with the sample magnetization, ~M . In

CASPEr-Wind the nuclear spins precess around the local velocity of the dark matter, ~v, while in

CASPEr-Electric the nuclear EDM causes the spins to precess around an e↵ective electric field inthe crystal ~E⇤, perpendicular to ~Bext. The SQUID pickup loop is arranged to measure the

transverse magnetization of the sample.

The CASPEr-Wind experiment is in fact a search for any light particle that couples to

nuclear spin (a generic coupling), not just the axion. For example, any pseudo-Goldstone

boson is expected to possess a coupling that would be detectable in the CASPEr-Wind

experiment. It can also detect other types of dark matter, for example hidden photon dark

matter (87, 26) is detectable through a nuclear dipole moment coupling.

Existing experiments may already be able to set limits on axion-like particles. Data

from experiments searching for nuclear EDMs or looking at nucleon spin precession in a

low background environment may be reanalyzed to search for a time-varying signal, a sign

of the axion. While not ultimately as sensitive as CASPEr where the signal is resonantly

enhanced, such searches may be able to probe beyond the current astrophysical limits in

Figures 7 and 8.

CASPEr is a novel and highly sensitive search for a broad class of dark matter candidates

in two new parameter spaces, the ‘axion wind’ and nuclear EDM, of which the QCD axion is

the most well-known example. In particular, CASPEr has the sensitivity to detect the QCD

axion over a wide range of masses from ⇠ 10�9 eV to 10�12 eV which are well-motivated

by fundamental physics (24) and where no other experiment can detect it.

Construction is just beginning on the CASPEr experiment. Work on CASPEr is cur-

rently being carried out in several places including Stanford, Berkeley, and Mainz.

70), and is also well-motivated theoretically (24).3Note that the Wind coupling leads to a spin-dependent force which could be probed using NMR

techniques as well e.g. (80, 81, 82, 83, 84, 85, 86).

www.annualreviews.org • Experimental Axion Searches 15

M(t) ⇡ npµE⇤✏Sdnsin [(2µBext � ma)t]

2µBext � masin(2µBextt)

resonance

[Budker et al., 1306.6089]

4

ADMX QCD Axion

SN 1987A

Static EDM

10!14 10!12 10!10 10!8 10!6 10!4 10!2 100

10!20

10!15

10!10

10!5

102 104 106 108 1010 1012 1014

mass !eV"

g d!GeV

!2 "

frequency !Hz"

FIG. 2: Estimated constraints in the ALP parameter space in the EDM coupling gd (where the nucleon EDM is dn = gda anda is the local value of the ALP field) vs. the ALP mass [17]. The green region is excluded by the constraints on excess coolingof supernova 1987A [17]. The blue region is excluded by existing, static nuclear EDM searches [17]. The QCD axion is in thepurple region, whose width shows the theoretical uncertainty [17]. The solid red and orange regions show sensitivity estimatesfor our phase 1 and 2 proposals, set by magnetometer noise. The red dashed line shows the limit from magnetization noise ofthe sample for phase 2. The ADMX region shows what region of the QCD axion has been covered (darker blue) [34] or willbe covered (lighter blue) [59, 60]. Phase 1 is a modification of current solid state static EDM techniques that is optimized tosearch for a time varying signal and can immediately begin probing the allowed region of ALP dark matter. To calculate limitsfrom previous (static) EDM searches as well as our sensitivity curves, we assume the ALP is all of the dark matter.

III. SENSITIVITY

The experimental sensitivity is likely to be limited by the magnetometer, rather than by the backgrounds discussedbelow. We assume a SQUID magnetometer with sensitivity 10�16 Tp

Hzas calculated from [38] for a ⇠ 10 cm diameter

sample and pickup loop (see Supplemental Materials). The sensitivity could be improved with better SQUIDs, alarger sample/pickup loop (see Supplemental Materials), or other types of magnetometers. For example, atomicSERF magnetometers could potentially improve this by another order of magnitude [56, 57].

Figure 2 shows the ALP parameter space of the EDM coupling gd versus ALP mass. This coupling is defined suchthat the oscillating nucleon EDM is dn = gda where a is the local value of the classical ALP field (see [17] for adetailed formula). This is di↵erent from the usual ALP-photon coupling parameter. The purple region of Fig. 2 showswhere the QCD axion lies in this parameter space. The dark purple is where the QCD axion may be the dark matter.This parameter space is described in detail in [17].

The solid (orange and red) regions in Fig. 2 show estimates for the sensitivities for two phases of our proposedexperiments. Phase 1 (upper, orange region) is a more conservative version relying on demonstrated technology.Phase 2 (lower, red region) relies on technological improvements which have been demonstrated individually but havenot been combined in a single experiment. Thus the phase 2 proposal may be taken as an estimate of one way toachieve the sensitivity necessary to see the QCD axion with this technique. Since this is a resonant experiment andthe frequency must be scanned, realistically it would likely take several experiments to cover either region.

The dashed (red) line in Fig. 2 shows the ultimate limit on the sensitivity of the phase 2 experiment from sample

(Budker, Graham, Ledbetter, Rajendran, and Sushkov ’13)

Page 44: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

How can we probe axion dark matter?

IAXO Projected (Axions from the Sun)

ADMX Limit (axion-DM resonant cavity)

ADMX Projected BH Superradiance?

e.g., Arvanitaki, Baryakhtar, Huang 2014

Page 45: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

The strong CP problem (neutron EDM)

d d

u+2/3 e

-1/3 e-1/3 e

⇠ 10�15m

I Calculation:dn ∼ 10−15 e · cm

I Data:|dn| < 3× 10−26 e · cm

I Axion a removes dn:

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I a as DM: a(t) ∼ √ρDM cos(mat)

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 46: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

The strong CP problem (neutron EDM)

d d

u+2/3 e

-1/3 e-1/3 e

⇠ 10�15m

I Calculation:dn ∼ 10−15 e · cm

I Data:|dn| < 3× 10−26 e · cm

I Axion a removes dn:

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I a as DM: a(t) ∼ √ρDM cos(mat)

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 47: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

The strong CP problem (neutron EDM)

d d

u+2/3 e

-1/3 e-1/3 e

⇠ 10�15m

I Calculation:dn ∼ 10−15 e · cm

I Data:|dn| < 3× 10−26 e · cm

I Axion a removes dn:

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I a as DM: a(t) ∼ √ρDM cos(mat)

Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978

Page 48: ABRACADABRA: Detecting axion dark matter · ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) 1406.0507 Ben Safdi MIT / University of Michigan Y. Kahn, B.S., J. Thaler,

The strong CP problem (neutron EDM)

d d

u+2/3 e

-1/3 e-1/3 e

⇠ 10�15m

I Calculation:dn ∼ 10−15 e · cm

I Data:|dn| < 3× 10−26 e · cm

I Axion a removes dn:

Laxion = − a

fa

g2

32π2GµνG̃

µν

I QCD gives a mass:

ma ≈fπfamπ ≈ 10−9 eV

(1016 GeV

fa

)

I a as DM: a(t) ∼ √ρDM cos(mat)Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978