AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average:...

41
1 Lecture 10 - Multistage Rockets Recommended reading AA283 course reader chapter 8 AA103 Air and Space Propulsion

Transcript of AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average:...

Page 1: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

1

Lecture 10 - Multistage Rockets

Recommended reading – AA283 course reader chapter 8

AA103 Air and Space Propulsion

Page 2: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

2

Page 3: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

3

Page 4: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

4

8.1 Notation

Page 5: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

5

8.2 Analysis

(8.2)

(8.3)

(8.4)

Page 6: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

6

(8.5)

(8.6)

(8.7)

Page 7: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

7

8.3 The variational problem

Page 8: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

8

Page 9: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

9

Page 10: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

10

δλn

Page 11: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

11

Page 12: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

12

Page 13: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

13

8.4 Example - Exhaust velocity and structural coefficient the same for all stages.

Page 14: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

14

Page 15: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

15

There is very little advantage to using more than about three stages.

Page 16: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

16

C1 = 2500 C2 = 4250 C3 = 4250

V3 = C1Ln1+ λ1ε1 + λ1

⎛⎝⎜

⎞⎠⎟+C2Ln

1+ λ2ε2 + λ2

⎛⎝⎜

⎞⎠⎟+C3Ln

1+ λ3ε3 + λ3

⎛⎝⎜

⎞⎠⎟

V3 = 2500Ln1+ 0.3210.05 + 0.321

⎛⎝⎜

⎞⎠⎟ + 4250Ln

1+ 0.4660.071+ 0.466

⎛⎝⎜

⎞⎠⎟ + 4250Ln

1+ 0.6030.191+ 0.603

⎛⎝⎜

⎞⎠⎟ = 10429M / sec

Page 17: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

17

The final velocity of a multistage system can be expressed as

Vn = Ci lnM 0i /MPi

M 0i /MPi −1⎛⎝⎜

⎞⎠⎟i=1

n

∑Consider a two stage design

V2 = C1LnM 01 /MP1

M 01 /MP1 −1⎛⎝⎜

⎞⎠⎟+C2Ln

M 02 /MP2

M 02 /MP2 −1⎛⎝⎜

⎞⎠⎟

MS1 =ε11− ε1

⎛⎝⎜

⎞⎠⎟MP1

M 01 = MS1 +MP1 +MS2 +MP2 +ML

M 02 = MS2 +MP2 +ML

Alternative approach.

Express payload mass in terms of propellant masses and payload fraction

ML =Γ1− Γ

⎛⎝⎜

⎞⎠⎟

11− ε1

⎛⎝⎜

⎞⎠⎟MP1 +

Γ1− Γ

⎛⎝⎜

⎞⎠⎟

11− ε2

⎛⎝⎜

⎞⎠⎟MP2

Γ = ML

M 01

MS2 =ε21− ε2

⎛⎝⎜

⎞⎠⎟MP2

Page 18: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

18

M 01

MP1

= 11− Γ

⎛⎝⎜

⎞⎠⎟

11− ε1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟MP2

MP1

⎝⎜⎞

⎠⎟

M 02

MP2

= 11− Γ

⎛⎝⎜

⎞⎠⎟

Γ1− ε1

⎛⎝⎜

⎞⎠⎟

1MP2 /MP1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟

Express stage mass ratios in terms of propellant mass ratios

V2 = C1LnM 01 /MP1

M 01 /MP1 −1⎛⎝⎜

⎞⎠⎟+C2Ln

M 02 /MP2

M 02 /MP2 −1⎛⎝⎜

⎞⎠⎟

Page 19: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

19

V2 = C1Ln

11− Γ

⎛⎝⎜

⎞⎠⎟

11− ε1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟MP2

MP1

⎛⎝⎜

⎞⎠⎟

11− Γ

⎛⎝⎜

⎞⎠⎟

11− ε1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟MP2

MP1

⎛⎝⎜

⎞⎠⎟−1

⎜⎜⎜⎜

⎟⎟⎟⎟

+C2Ln

11− Γ

⎛⎝⎜

⎞⎠⎟

Γ1− ε1

⎛⎝⎜

⎞⎠⎟

1MP2 /MP1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟

11− Γ

⎛⎝⎜

⎞⎠⎟

Γ1− ε1

⎛⎝⎜

⎞⎠⎟

1MP2 /MP1

⎛⎝⎜

⎞⎠⎟+ 11− ε2

⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟−1

⎜⎜⎜⎜

⎟⎟⎟⎟

For given values of Γ,C1,C2 ,ε1,ε2

The final velocity is a function of the propellant ratio.

V2 = FMP2

MP1

⎛⎝⎜

⎞⎠⎟

It is now just a matter of differentiating with respect to the propellant ratio to identify a maximum.

Page 20: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

20

Application - Mars Sample Return Campaign 2020-2030

Lander to Surface

MAV

Mars Orbit Rendezvous

Return to Earth

•  Next major step in Mars Science •  Requires international collaboration •  Multiple new developments

–  Mars Ascent Vehicle (MAV) –  Sample acquisition and handling –  Precision entry descent and landing

Page 21: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

21

Mars Sample Return Mission Architecture

Page 22: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

22

A rover would drill rock samples and place them in individual containers. The samples would be left on the surface of Mars for later pick up by a second rover. The second rover would place the samples in the payload bay of the MAV which would then launch to Mars orbit.

Page 23: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

23

Critical Challenge: Mars Environmental Conditions

0 5 10 15 20 25−120

−100

−80

−60

−40

−20

0

20

40

Local Time of Day, hours

Surf

ace

Tem

pera

ture

, C

Min: !111C

Max: 24C

Average: !60C

Student Version of MATLAB

Data from the NASA Ames Research Center Mars Global Climate Model for Holden Crater.

Page 24: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

24

Mars 2020 landing site was chosen November 2018

Jezero crater - 18° above the Mars equator

Gale crater - 5° below the Mars equator

Page 25: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

25

The Mars Ascent Vehicle

The MAV takes a container with Mars soil samples into orbit around Mars. There the container is transferred to another spacecraft for the return journey to Earth.

Page 26: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

26

Use a two stage design for the Mars ascent vehicle

ε1 = 0.13ε2 = 0.155C1 = 2883C2 = 3026Γ = 0.147MP2 /MP1

V2

0.354 Note that the final velocity is actually quite insensitive to the propellant mass

ratio giving the designer quite a bit

of flexibility. Notional values.

Ashley Chandler’s PhD project

In order to confirm the design it is necessary to fly it to orbit.

Page 27: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

27

Kepler’s equations govern the motion of objects near gravitating bodies. This is called the two body problem.

x(t)+MPlanetG

x(t)r(t)3

= 0 y(t)+MPlanetG

y(t)r(t)3

= 0 z(t)+MPlanetG

z(t)r(t)3

= 0

Kepler’s Equations

G = 6.67 ×10−11 m3/kg-sec2

r t( ) = x t( )2 + y t( )2 + z t( )2

F = −G Mmr2

rr

⎛⎝⎜

⎞⎠⎟

Universal gravitational constant

Page 28: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

28

Constants of the motion – two body problem

E = 12mv2 − k

r L = r × p

Energy Angular momentum

A = p × L −mk rr

⎛⎝⎜

⎞⎠⎟

k = Gm1m2

m = m1m2

m1 +m2

Reduced mass

The Laplace vector

Page 29: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

29

Orbital Period

Kepler’s theory gives

Page 30: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

30

Orbital Periods of the Planets about the Sun

Page 31: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

31

Mars Ascent Vehicle - launch to orbit Equations of motion

x(t)+ mMARSG

x(t)r(t)3

+FxDRAG (t)m(t)

−FxTHRUST (t)m(t)

= 0

y(t)+ mMARSG

y(t)r(t)3

+FyDRAG (t)m(t)

−FyTHRUST (t)m(t)

= 0

z(t)+ mMARSG

z(t)r(t)3

+FzDRAG (t)m(t)

−FzTHRUST (t)m(t)

= 0

Mars radius=3.376 x 106 m Mars mass=6.418 x 1023 kg gMARS = mMARSG / r

2 = 3.756 m/sec2

τMARS =r3

mG= 948.03Mars time scale: sec

Mars velocity scale: UMARS =mGr

= 3561 m/sec

x

y z

G = 6.67 ×10−11 m3/kg-sec2

Universal gravitational constant

Vehicle mass m(t)

Page 32: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

32

CD

M

Drag

t /τ

Aerodynamic drag

CD M=0 = 0.2

Page 33: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

33

Angle between velocity vector and planet radius

V

r

x

y z

Launch point

β

Page 34: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

34

Surface speed at the equator=241.17 m/sec Vertical launch 12.5 sec

First stage gravity turn 36.6 sec

Coast 620 sec

Second stage gravity turn to orbit 39.4 sec

dβdt ROCKET

= 0.038 degrees/sec

dβdt

= 0.132 degrees/sec

dβdt

= 0.0007 degrees/sec

Gravity turn Launch trajectory FTHRUST ×V = 0

V = ( x, y, z)

See the paper Universal Gravity Turn Trajectories on my website.

Page 35: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

35

Launch and orbit trajectory

Maximum altitude 557.9 km

Minimum altitude 527.5 km

Page 36: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

36

The mass ratios can be written in terms of the payload fraction as follows.

M 01 /MP1 =1

1− Γ⎛⎝⎜

⎞⎠⎟

11− ε1

+ 11− ε2

MP2 /MP1( ) + 11− ε3

MP3 /MP1( )⎛⎝⎜

⎞⎠⎟

M 03 /MP3 =1

1− Γ⎛⎝⎜

⎞⎠⎟

11− ε3

+ Γ1− ε1

1MP3 /MP1

⎛⎝⎜

⎞⎠⎟+ Γ1− ε2

MP2 /MP1

MP3 /MP1

⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟

M 02 /MP2 =1

1− Γ⎛⎝⎜

⎞⎠⎟

11− ε2

+ Γ1− ε1

1MP2 /MP1

⎛⎝⎜

⎞⎠⎟+ 11− ε3

MP3 /MP1

MP2 /MP1

⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟

V3 = C1 lnM 01 /MP1

M 01 /MP1 −1⎛⎝⎜

⎞⎠⎟+C2 ln

M 02 /MP2

M 02 /MP2 −1⎛⎝⎜

⎞⎠⎟+C3 ln

M 03 /MP3

M 03 /MP3 −1⎛⎝⎜

⎞⎠⎟

Three stage design

Page 37: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

37

For given values of

Γ,C1,C2 ,C3,ε1,ε2 ,ε3The final velocity is a function of of the propellant ratios.

Differentiate with respect to the two variables to identify a maximum.

V3 = FMP2

MP1

,MP3

MP1

⎛⎝⎜

⎞⎠⎟

Page 38: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

38

ε1 = 0.116

ε2 = 0.117

ε3 = 0.148

C1 = 3040 m / sec

C2 = 3210 m / sec

C3 = 3350 m / sec

Γ = 0.01125

ΔV = 10,800 m / sec

Payload mass = 85 kg

M 01 = 7557 kg

Three stage launch vehicle for small satellites

Page 39: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

39

Page 40: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

40

MAV System

Two Stage Solid

40% Margin Hybrid

20% Margin Hybrid

Sta

ge 1

Mass (kg) 215.6 145.89 128.86 Structural Coefficient 0.170 0.189 0.167 Max. Pchamber (MPa) 4.83 1.72 1.72 Delivered Isp (m/sec) 2813 2952 2951 ∆V (m/sec) 2530 1675 1675

Sta

ge 2

Mass (kg) 86.2 91.37 83.57 Structural Coefficient 0.175 0.169 0.147 Max. Pchamber (MPa) 6.45 1.38 1.38 Delivered Isp (m/sec) 2813 2977 2976 ∆V (m/sec) 1845 2700 2700

Total Ideal ∆V (m/sec) 4375 4375 4375 Maximum Diameter (m) 0.442 0.541 0.524 Vehicle Length (m) 2.56 3.829 3.747 Payload Mass (kg) 36 36 36 Gross Lift Off Mass (kg) 301.8 273.3 248.4 Igloo Mass (kg) 50 0 0 System Total Mass (kg) 351.8 273.3 248.4

System Parameters - proposed design

Γ = 0.132

Page 41: AA103 Air and Space Propulsion - Stanford Universitycantwell/AA103_Course... · Max: 24C Average: !60C Student Version of MATLAB Data from the NASA Ames Research Center Mars Global

41

Gravity turn equations

FTHRUST − FDRAG( )×V = 0

V = ( x, y, z)

!y t( )Fz t( )− !z t( )Fy t( ) = 0 !z t( )Fx t( )− !x t( )Fz t( ) = 0 !x t( )Fy t( )− !y t( )Fx t( ) = 0

Assume there is no lift on the rocket

Fy t( ) = !y t( )!x t( )Fx t( )

Fz t( ) = !z t( )!x t( )Fx t( )

!!x(t)+mMARSGx(t)r(t)3 +

FxDRAG (t)m(t)

−FxTHRUST (t)m(t)

= 0

!!y(t)+mMARSGy(t)r(t)3 +

FyDRAG (t)m(t)

−FyTHRUST (t)m(t)

= 0

!!z(t)+mMARSGz(t)r(t)3 +

FzDRAG (t)m(t)

−FzTHRUST (t)m(t)

= 0

Vehicle acceleration

a t( ) =Fx t( )2 + Fy t( )2 + Fz t( )2( )1/2

m t( ) =Fx t( )!x t( )m t( ) !x t( )2 + !y t( )2 + !z t( )( )1/2

Fx t( )m t( ) =

!x t( )!r t( ) a t( )

!!x(t)+mMARSGx(t)r(t)3 − a t( ) !x(t)

!r(t)= 0

!!y(t)+mMARSGy(t)r(t)3 − a t( ) !y(t)

!r(t)= 0

!!z(t)+mMARSGz(t)r(t)3 − a t( ) !z(t)

!r(t)= 0