A Note on Correlated Topic Models

4

Click here to load reader

Transcript of A Note on Correlated Topic Models

Page 1: A Note on Correlated Topic Models

Deriving formulas used in a variational Bayesian inference for

Correlated Topic Models

Tomonari MASADA @ Nagasaki University

December 21, 2012

1 Model

This manuscript includes a derivation of update formulas for correlated topic models (CTM)[1]. We givea generative description of CTM below.

1. For each topic k, draw a multinomial Mul(φk) from a Dirichlet prior Dir(β).

2. For each document d,

(a) Draw md from a Gaussian N (µ,Σ).

(b) Let θdk ≡ exp(mdk)∑k exp(mdk) .

(c) For the ith word token, draw a topic zdi from a multinomial Mul(θd).

(d) For the ith word token, draw a word xdi from a multinomial Mul(φzdi).

A full joint distribution can be written as follows:

p(x, z,φ,m|β,µ,Σ) = p(φ|β)p(m|µ,Σ)p(z|m)p(x|φ, z)

=∏k

p(φk|β) ·∏d

p(md|µ,Σ) ·∏d

∏i

p(zdi|md)p(xdi|φzdi)

=∏k

Γ(∑w βw)∏

w Γ(βw)φβw−1kw ·

∏d

1

(2π)K/2|Σ|1/2exp

{− 1

2(md − µ)TΣ−1(md − µ)

}·∏d

∏i

∏k

{exp(mdk)∑k exp(mdk)

φkxdi

}δ(zdi=k)

, (1)

where δ(·) is equal to one when the condition inside the parentheses holds and is equal to zero otherwise.

2 Variational Bayesian inference

A log evidence of an observed document set x can be lower-bounded by using Jensen’s inequality as follows:

ln p(x|β,µ,Σ) = ln

∫ ∑z

p(φ|β)p(m|µ,Σ)p(z|m)p(x|φ, z)dφdm

= ln

∫ ∑z

q(z)q(φ)q(m)p(φ|β)p(m|µ,Σ)p(z|m)p(x|φ, z)

q(z)q(φ)q(m)dφdm

≥∫ ∑

z

q(z)q(φ)q(m) lnp(φ|β)p(m|µ,Σ)p(z|m)p(x|φ, z)

q(z)q(φ)q(m)dφdm

=

∫ ∑z

q(z)q(m) ln p(z|m)dm+

∫q(φ) ln p(φ|β)dφ

+

∫ ∑z

q(z)q(φ) ln p(x|φ, z)dφ+

∫q(m) ln p(m|µ,Σ)dm

−∑z

q(z) ln q(z)−∫q(φ) ln q(φ)dφ−

∫q(m) ln q(m)dm . (2)

1

Page 2: A Note on Correlated Topic Models

With respect to variational posteriors, we assume:

• q(z) is factorized as∏d

∏i

∏k q(zdi|γdi) =

∏d

∏i

∏k γ

δ(zdi=k)dik ;

• q(φ) is factorized as∏k q(φk|ζk), where each q(φk|ζk) is a Dirichlet; and

• q(m) is factorized as∏d

∏k q(mdk|rdk, sdk), where each q(mdk|rdk, sdk) is a univariate Gaussian.

2.1∫ ∑z

q(z)q(m) ln p(z|m)dm

=

∫ ∑z

(∏d

∏i

∏k

γδ(zdi=k)dik

){∏d

∏k

q(mdk|rdk, sdk)

}ln∏d

∏i

∏k

{exp(mdk)∑k exp(mdk)

}δ(zdi=k)

dm

=∑d

∑i

∑k

γdik

∫q(mdk|rdk, sdk) ln exp(mdk)dmdk

−∑d

∑i

∑k

γdik

∫q(md|rd, sd) ln

{∑k

exp(mdk)}dmd

=∑d

∑i

∑k

γdikrdk −∑d

∑i

∑k

γdik

∫q(md|rd, sd) ln

{∑k

exp(mdk)}dmd (3)

We obtain a lower bound by a variational method proposed in [1]. Since f(x) = lnx ≤ xν − 1 + ln ν for

any ν > 0, we introduce a new variable νd for each document and obtain the following inequality:∫q(md|rd, sd) ln

{∑k

exp(mdk)}dmd ≤

∫q(md|rd, sd)

{ν−1d

∑k

exp(mdk)− 1 + ln νd

}dmd

= ln νd − 1 + ν−1d

∑k

∫q(mdk|rdk, sdk) exp(mdk)dmdk

= ln νd − 1 + ν−1d

∑k

exp(rdk + s2dk/2) . (4)

Therefore, Eq. (3) can be lower-bounded as follows:∫ ∑z

q(z)q(m) ln p(z|m)dm ≥∑d

∑i

∑k

γdik

{rdk − ln νd + 1− ν−1

d

∑k

exp(rdk + s2dk/2)

}. (5)

2.2 ∫q(φ) ln p(φ|β)dφ =

∑k

∫Γ(∑w ζkw)∏

w Γ(ζkw)

∏w

φζkw−1kw ln

Γ(∑w βw)∏

w Γ(βw)φβw−1kw dφk

= K ln Γ(∑w

βw)−K∑w

ln Γ(βw) +∑k

∑w

(βw − 1){

Ψ(ζkw)−Ψ(∑w

ζkw)}

(6)∫ ∑z

q(z)q(φ) ln p(x|φ, z)dφ =∑d

∑i

∑k

γdik

∫Γ(∑w ζkw)∏

w Γ(ζkw)

∏w

φζkw−1kw lnφkxdi

dφk

=∑d

∑i

∑k

γdik{

Ψ(ζkxdi)−Ψ(

∑w

ζkw)}

(7)

These derivations are completely the same with latent Dirichlet allocation (LDA).

2

Page 3: A Note on Correlated Topic Models

2.3 ∫q(m) ln p(m|µ,Σ)dm

=∑d

∫ ∏k

q(mdk|rdk, sdk) ln

[1

(2π)K/2|Σ|1/2exp

{− 1

2(md − µ)TΣ−1(md − µ)

}]dmd

= −DK2

ln 2π − D

2ln |Σ| − 1

2

∑d

∑k

s2dk(Σ−1)kk −

1

2

∑d

(rd − µ)TΣ−1(rd − µ) , (8)

where (Σ−1)kk′ means the (k, k′)th entry of Σ−1. The last two terms are derived as follows:∫ ∏k

q(mdk|rdk, sdk)(md − µ)TΣ−1(md − µ)dmd

=

∫ ∏k

q(mdk|rdk, sdk){∑

k

(mdk − µk)2(Σ−1)kk +∑k

∑k′ 6=k

(mdk − µk)(mdk′ − µk′)(Σ−1)kk′}dmd

=∑k

(r2dk + s2

dk − 2rdkµk + µ2k)(Σ−1)kk +

∑k

∑k′ 6=k

(rdk − µk)(rdk′ − µk′)(Σ−1)kk′

=∑k

s2dk(Σ−1)kk +

∑k

∑k′

(rdk − µk)(rdk′ − µk′)(Σ−1)kk′

=∑k

s2dk(Σ−1)kk + (rd − µ)TΣ−1(rd − µ) (9)

2.4 ∑z

q(z) ln q(z) =∑d

∑i

∑k

γdik ln γdik (10)∫q(φ) ln q(φ)dφ =

∑k

ln Γ(∑w

ζkw)−∑k

∑w

ln Γ(ζkw) +∑k

∑w

(ζkw − 1){

Ψ(ζkw)−Ψ(∑w

ζkw)}(11)∫

q(m) ln q(m)dm = −DK2−DK ln

√2π −

∑d

∑k

ln sdk (12)

3 Updating posteriors

Consequently, the lower bound in Eq. (2) is obtained as follows:

ln p(x|β,µ,Σ) ≥∑d

∑i

∑k

γdik

{rdk − ln νd + 1− ν−1

d

∑k

exp(rdk + s2dk/2)

}+K ln Γ(

∑w

βw)−K∑w

ln Γ(βw) +∑k

∑w

(βw − 1){

Ψ(ζkw)−Ψ(∑w

ζkw)}

−∑k

ln Γ(∑w

ζkw) +∑k

∑w

ln Γ(ζkw)−∑k

∑w

(ζkw − 1){

Ψ(ζkw)−Ψ(∑w

ζkw)}

+∑d

∑i

∑k

γdik{

Ψ(ζkxdi)−Ψ(

∑w

ζkw)}−∑d

∑i

∑k

γdik ln γdik

− DK

2ln 2π − D

2ln |Σ| − 1

2

∑d

∑k

s2dk(Σ−1)kk −

1

2

∑d

(rd − µ)TΣ−1(rd − µ)

+DK

2+DK ln

√2π +

∑d

∑k

ln sdk . (13)

Let L denote the right hand side. With respect to νd, we obtain a derivative:

∂L

∂νd=∑i

∑k′

γdik′{− ν−1

d + ν−2d

∑k

exp(rdk + s2dk/2)

}. (14)

3

Page 4: A Note on Correlated Topic Models

Note that∑i

∑k′ γdik′ is equal to nd, the length of document d. From ∂L/∂νd = 0, we obtain νd =∑

k exp(rdk + s2dk/2). With respect to γdik, we obtain a derivative:

∂L

∂γdik= rdk − ln νd + 1− ν−1

d

∑k

exp(rdk + s2dk/2) + Ψ(ζkxdi

)−Ψ(∑w

ζkw)− ln γdik + 1 . (15)

Therefore, by using νd =∑k exp(rdk +s2

dk/2), we can update γdik as γdik ∝ exp(rdk) · exp Ψ(ζkxdi)

exp Ψ(∑

w ζkw) . Withrespect to rdk,

∂L

∂rdk= ndk −

ndνd

exp(rdk + s2dk/2)−

∑k′

(rdk′ − µk′)(Σ−1)kk′ , (16)

where ndk ≡∑i γdik. This cannot be solved analytically. Therefore, we maximize

L(rdk) = ndkrdk −ndνd

exp(rdk + s2dk/2) +

1

2r2dk(Σ−1)kk − rdk

∑k′

(rdk′ − µk′)(Σ−1)kk′ (17)

by some gradient-based method (e.g. L-BFGS). With respect to sdk, we maximize

L(sdk) = −ndνd

exp(rdk + s2dk/2)− 1

2s2dk(Σ−1)kk + ln sdk (18)

by using a gradient

∂L(sdk)

∂sdk= −nd

νdexp(rdk + s2

dk/2)− sdk(Σ−1)kk +1

sdk. (19)

With respect to ζkw, we obtain the following update: ζkw = βw +∑d

∑i

∑k γdik.

With respect to Σ, we have the following function to be maximized:

L(Σ) = −D2

ln |Σ| − 1

2

∑d

∑k

s2dk(Σ−1)kk −

1

2

∑d

(rd − µ)TΣ−1(rd − µ) . (20)

From the first term in Eq. (20), we obtain a derivative ∂ ln |Σ|∂Σkk′

= tr(Σ−1 ∂Σ

∂Σkk′

). The matrix Σ−1 ∂Σ

∂Σkk′

has non-zero entries only in the k′th column, and the column has an entry (Σ−1)lk at the lth row.

Therefore, ∂ ln |Σ|∂Σkk′

= (Σ−1)k′k. By a symmetry, ∂ ln |Σ|∂Σ = Σ−1.

For the second term in Eq. (20), it holds that∑k s

2dk(Σ−1)kk = tr(Σ−1Sd), where Sd is a diagonal

matrix whose kth diagonal entry is s2dk. By using an equation1 ∂tr(AΣ−1B)

∂Σ = −Σ−1BAΣ−1, we obtain∂∑

d

∑k s

2dk(Σ−1)kk

∂Σ = −Σ−1(∑

d Sd)Σ−1.

For the last term in Eq. (20), it holds that (rd − µ)TΣ−1(rd − µ) = tr((rd − µ)TΣ−1(rd − µ)

).

Therefore, by using an equation ∂tr(AΣ−1B)∂Σ = −Σ−1BAΣ−1 again, we obtain ∂(rd−µ)TΣ−1(rd−µ)

∂Σ =

−Σ−1(rd − µ)(rd − µ)TΣ−1.Consequently,

∂L(Σ)

∂Σ= −D

2Σ−1 +

1

2Σ−1

(∑d

Sd)Σ−1 +

1

2Σ−1

∑d

{(rd − µ)(rd − µ)T

}Σ−1 . (21)

Therefore, ∂L(Σ)∂Σ = 0 holds when Σ−1 = 1

DΣ−1∑d

{Sd + (rd − µ)(rd − µ)T

}Σ−1. By multiplying Σ

from the left and the right, we obtain Σ = 1D

∑d

{Sd + (rd − µ)(rd − µ)T

}.

References

[1] David M. Blei and John D. Lafferty. Correlated topic models. In NIPS, 2005.

1cf. Eq. (16) in http://research.microsoft.com/en-us/um/people/minka/papers/matrix/minka-matrix.pdf

4