A. Navin GANIL - Istituto Nazionale di Fisica Nuclearefusion06/talks/Thursday/navin.pdf · A. Navin...

25
I A. Navin A. Navin GANIL Exclusive measurements with weakly bound nuclei Is it really required, How far can we go with RIB What does one learn new

Transcript of A. Navin GANIL - Istituto Nazionale di Fisica Nuclearefusion06/talks/Thursday/navin.pdf · A. Navin...

I

A. NavinA. NavinGANIL

Exclusive measurementswith weakly bound nuclei

•Is it really required, How far can we go with RIB

•What does one learn new

Conclusions

ØGreat Future with weakly bound Nucleiespecially with RIBs

Lots of new questions and anwersØNo limits, dream of it and we can make it

a reality

Correlations Stable weakly bound beams, Mumbaip γ6,7Li+60Ni Mixing of CN+direct reactions Fusion of WBN7Li+165Ho breakup fusion /transfer?

Ø Radioactive ion beams SPIRALp γ n6He+65Cu neutron correlations in borromean nucleiLimits 8He

POA

SHEERLUCK Holmes

Last Century nextdecade

Structure Reaction

Richness with skins,Tails and halosFUSION

Elastic scattering

BUF

transfer

4He 6He 8He

Sn(MeV) 20.58 1.863 2.583

S2n(MeV) 0.973 2.138

<r2>1/2 (fm) 1.67(01) 2.54(04) 2.49(04)

6Li 7LiSα/d Sα/t1.475 2.47

MeV

WB2WB1

7Li+60Ni

αt

67Ga

t+ (60Ni+α)

α + (60Ni+t)

α,t 60Ni

7Li+60Ni

Who is thefather ?

Intensity of low lying γ transitions à σER

Σ σE.R = σFUSION

66Cu

γ2+

0+

γ - ray detector array

68Ga68Zn

Projectile

6,8He Fusionp3n

5n α3n

4+Ga

69Ga

4n

Transfer

Si CDCD detectors EXOGAM Neutron Wall

Energy Angular correlations

Elastic Scattering Angular distibutions E-∆E CDCD detectors

6,7Li

65CuTarget

Neutron-WallEXOGAM

CD

Exclusive measurements

How do we do it

γ p n

7Li+60Ni, CASCADE

Elab15 20 25 30 35

σ F (

mb )

0.1

1

10

100

2n (65Ga) np (65Zn) 2p (65Cu) 2np (64Zn) 3n (64Ga) 2pn (64Cu) a (63Cu) an (62Cu) ap (62Ni) a2n (61Cu) anp (61Ni) 2a (59Co) 2an (58Co)

62Cu, 62Ni,61Cu,61Ni,58Co 63Zn, 60Ni

Satistical Model calculations(alpha+t)+Target

alpha+target, t+target

Stable Weakly bound Nuclei

Setup at Setup at PelletronPelletron, Mumbai, Mumbain p t d α + gamma coinc

Presence of two components in the alpha Spectraσnc~430mb and σcn=350mb

θlab

0 50 100 150

dσα/d

Ω (m

b/st

r)

100

101

102

7LI+60Ni 30 MeV

α angular distbn

Near and away from grazing angleNear and away from the barrier 15, 30 MeV

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 1601e-5

1e-4

1e-3

1e-2

1e-1

1e+0 theta_l vs sig/sigr OPM

α+t

(6),7Li+60Ni Mixing of CN+direct reactions

alpha particle spectra

Elab.

5 10 15 20

100

300Cou

nts/

0.5

keV

100

200

300

400

Eγ (keV)200 250 300 350 400 450 500

0

100

200

10 20 30

100

20061Ni

58Co62Cu61Cu

30 MeV

15 MeV

1200

400

1200

400

E α G

ate

8-13 M

eV

21-42

MeV

E α Gate

7.9-20

MeV

5.2-7.8

MeV

Eα Gate

4.5-8.6 MeV

8.6-15 M

eV

E α Gate

9.9-18.7 MeV

7.2-9.9 MeV

α- 62Cu30 MeV

Cou

nts

(arb

)

(1) (2)

(3)

400

1200

α- 62Cu15 MeV

1200

400

p-γAlpha Spectra ßà gamma spectra

40o grazing

120o grazing

Need for understanding the origin before extracting physics!

Transfer ?

Qopt

7Li + 60Ni

62Cu αn

E (keV)

184.6166Er

280.4166Er

184.6166Er

280.4166Er

365.5166Er

Different Routes Different Routes àà 166166ErErfrom t fusion/transfer and p transferfrom t fusion/transfer and p transfer

p transfer

t-transfer/fusion

Side feeding patternAngular momentum

7Li+165Hoà4He+(168Er)* t fusion/transferà6He+166Er proton transfer

77Li + Li + 165165Ho 42 Ho 42 MeVMeVBreakup fusion /transferBreakup fusion /transfer

Phys.Rev. C 72, 017601 (2005)

6He + 65Cu

σ(m

b)

102

103

2n 3np2np3n66Cuα2nα3n4n

4He + 65Cu

σE

R (m

b)

101

102

103

2n αn1ppn1np2n3nα

Ec.m. (MeV)15 20 25 30 35 40

σ (m

b)

0

500

1000

1500

4He+65Cu6He+65Cu

(c)

(a)

(b)

RIBBUY ONE (FUSION) GET ONE FREE (TRANSFER)

Evidence for non fusion processà TRANSFER(Same residue as from fusion)

σ (6He+Cu) = (6He+Cu)+(a+Cu) + (n+Cu)

Phys.Rev. C 70, 044601 (2004)

6He+238U

P.A. Young et al 6He+Bi Phys.Rev. C 71, 051601 (2005)Includes breakup

5He+66Cu 1n4He+(67Cu)* 2n

Transfer

Si CDCD detectors EXOGAM Neutron Wall

Energy Angular correlations

4He, 66Cu + n

Beam dumpFC (105pps)Neutron-WallEXOGAM

CD

6He+65Cu 1n and 2n transfer

What’s new at SPIRAL

p-γ-n correlations with RIB

(No breakup)

6,8He

Angles (θ) of different rings :

18.5°, 30.3°, 34.9°, 46.8°, 47.2°, 57.2°Fifteen 5 x5inch hexagonal liquidscintillator

(BC501) detectors

- three segments for each

- Total of 45 separate detector

segments with its own PMT

Three signals per segment :

- TOF, ZCO and QVC

Target to focal point of N_Wall

- 57 cm

State of art: Triple coincidences 6He

6He + 65Cu - 5He + 66Cu*correlated α + nb (66Cu+γ)γ gate on 66Cu

6He + 65Cu - 4He + 67Cu*(uncorrelated) α (66Cu+γ) +nt

φn

φα

SimulationsExperiment

2n transfer 1n transfer

SPIRAL-I

El=23 MeV

18o-57o

20o-55o

4x107 /secTOF

ESi

γ gate on 66Cu γ gate on 68Zn (2np)

φn φn

φα

Bottom line: 1n and 2n transfer angular distribtions: Correlations

ϕn

ϕα

En

En

1n transfer 2 x105

2n transfer 6 x105

Simulations

How much 1n & 2nStructure of 6He 5+1, 4+2?

8He

• He anamoly• 4n skin/halo how does it different viz vis 6He• p-γ to get transfer angular distributionsMuch more later…..Elastic scattering, Fusion cross sections …..

Limits 8He+65Cu

Low ! ? intensity 1x105 20 and 30 meV Vb ~11 MeV

Coincidencetransitions

4He,6He

Qgg

8He+65Cu 7He+66Cu 4.482

6He+67Cu 14.04

5He+68Cu 18.49

4He+69Cu 27.65

(α3n)+66Cu CN

4He 6He

γ,n

A Neutron OR gatesB Si-γC Singles20 MeV, 30 MeV(scaled)

Absolute ER cross sections singles γwith a beam intensity 105 pps +…

68Ga

68Ga

68Ga 68Ga

68Ga

66Cu

A

B C

It is hard to make predictions, especially of the future

FB

SPIRAL 2 SPIRAL 2

LINAG

LIRAT

LIRAT 2

C

Source

UCx2000°C

diffusion / effusiondeuterons40 MeV neutrons

1+ n+

C

Source

UCx2000°C

diffusion / effusiondeuterons40 MeV neutrons

1+ n+

Goal:1014 fissions/sGoal:1014 fissions/s

Linear deuteron and heavy-ion driver production of proton-rich and light RIBs

as well as future extension to higher energies -> synergy with EURISOL

Linear deuteron and heavy-ion driver production of proton-rich and light RIBs

as well as future extension to higher energies -> synergy with EURISOL

RFQRFQDeuteron source

5mADeuteron source

5mA

Superconducting LINACE = 14.5 AMeV for heavy Ions

A/q=3E = 40 MeV for deuterons

Superconducting LINACE = 14.5 AMeV for heavy Ions

A/q=3E = 40 MeV for deuterons

Production CaveC converter+UCx target

≤ 1014 fissions/s

Production CaveC converter+UCx target

≤ 1014 fissions/s

Light Intense: 15C

Ø15C Sn =1.2 Sp =21 MeV l=0, C2S=0.96 9Be(7Li,p)15C production

Ideal case for study of effect of WB on reaction mechanism

•Advantages over 11Be difficult Ref case9,10Be, no admixture of s1/2 and d5/2 in ψ

15C+144Sm--> 159Er Ref Case12C+144Sm--> 157Er

Weak and heavy2. Recent HRIBF Research -Measurement of E R at Sub-Barrier Energies 134Sn + 64Ni Feb 2005 (D. Shapira, Spokesperson)

136Sn 4x10 3 pps

Sn =3.7 MeV t1/2 0.25 secs136Sn+80Se 216Po

Letter of Intent in May

IPN, IN2P3-CNRS BHABHA ATOMIC RESEARCH CENTERTata Institute of Fundamental ResearchCEA/ SACLAY

GANILTIT, Japan

IKS, University of Leuven Daresbury LabsUniversity of Surrey

Uppsala University

Collaboration

SP3SP2

The woods are lovely dark and deep,But the fusion community have miles to go

before it sleeps,Miles to go before FUSION09 at

GANIL?………….Robert Frost