A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V...

24
A 25MS/s 14b 200mW Σ∆ Modulator in 0.18µm CMOS Pio Balmelli UT Mixed-Signal/RF Integrated Circuits Seminar Series April 19 th , Austin TX

Transcript of A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V...

Page 1: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

A 25MS/s 14b 200mW Σ∆ Modulator in 0.18µm CMOS

Pio Balmelli

UT Mixed-Signal/RF Integrated Circuits Seminar Series

April 19th, Austin TX

Page 2: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

2 Outline

VDSL specifications

Σ∆ A/D converter features

Broadband Σ∆ modulator architecture

Design description

Measurement results

Conclusion

Page 3: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

3 VDSL

Local loop

PC

Localexchange

TelephonePublic

telephonenetwork

Internet

30Mbps

12 [MHz]0.10

VDSL Signal Bandwidth: A/D Specifications:

>24MS/sConversion rate

12-14bitResolution

1mile

Page 4: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

4 Σ∆ vs. Nyquist A/D Converters

• No precise sample&hold stage• No complex anti-aliasing filter• Better untrimmed linearity

• Reduced conversion rate

Advantages:

Disadvantage:

Broadband architecture:Low OSR + High sampling frequency

Page 5: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

5 Broadband Architecture

Discrete time:• Low jitter sensitivity• No excess loop delay

problem

Loopfilter feed-forward topology:• Small noise contribution of internal stages

fS

x[k]

y[k]

DAC

a1

z-1a2

z-1

Single-loop:• Low capacitor matching

specifications• Relaxed settling accuracy

Q

Page 6: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

6 Single-Bit Quantizer

Result:• Single-bit quant.

achieves poorSNR at low OSR

Maximum Input Level

26

28

30

32

34

36

L = 7

L = 3

L = 5

[dB]

-8 -6 -4 -2-7 -5 -3 [dBREF]

Pea

k S

NR

NQ= 1b Constraints:• OSR = 8

L :Filter orderNQ:Quantizer

resolution

Page 7: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

7 Quantizer Resolution and Filter Order

Maximum Input Level

Pea

k S

NR

70

80

90

95

-8 -6 -4 -2-7 -5 -3 [dBREF]

[dB]

85

75

Constraints:• OSR = 8• SNR > 95dB

Architecture:• 5th order loopfilter

and 4b quantizer,best tradeoff

L = 4NQ= 5b

L = 5NQ= 4b

L = 9NQ= 3b

L :Filter orderNQ:Quantizer

resolution

Page 8: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

8 Block Diagram

96dBSNR-4dBMax input

8OSR5/9

x[k]

y[k]

15 1/13z-1 8 5 2

9 9 8 8 21

4 bitQuantizer

16 levelDAC

21/3

11/6z-1

1/7z-1

1/7zz-1

12

z-12

1/3zz-1

1/7zz-1

1/6zz-1

1/13zz-1

12

z-12

12

12

12

Page 9: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

9 Noise and Signal Transfer Function

-120

-80

-40

0

100k 1M 100M[Hz]

[dB]

Noise transfer functionSignal transfer function

6.34MHz

9.86MHz

10M

Page 10: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

10 Switch Level Diagram

ϕ1:ϕ2:

x[k]

4 bit quantizer

13C1

y[k]

7rst

15x

4 bit DAC

15 Logarithmicshifter

4

4

15

15C1 3C24C2

C2/6

5C3

7C3 7C4

2C4 3C5

C5

2C4

2CFF8CFF8CFF9CFF9CFF

Dynamic element matching

ϕ1DWACQ

ϕ2

ϕ2

ϕ2

V R V R

Gainstage

To neg.path

To neg.path

Page 11: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

11 Data Weighted Averaging

1’scounter

Modulo15 adder

ϕ2

4

ϕ2

15 15

Quantizer DAC

Q[k] Q*[k]

A[k]

Logarithmicshifter

DWA logic

y[k]

• 1st order shaping

• DAC elements usedat maximum rate

• Each element selected same number of times

• DWA logic:

<1mWPower

4nsDelay

96# std. cells

4

[Baird95]

Page 12: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

12 DWA Performance

-120

-80

σC1=0.23%

-40

10M

0

Simulated Output Power Spectrum[dB]

100M1M100k[Hz]

DWAw.o. DWA

Page 13: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

13

x[k]

Shared capacitorsfor x[k] and VR:

• 3dB less kT/Cnoise

• Reduced amp. load• Fast reference

buffer needed

Input Stage

Referencebuffer

ϕ1

ϕ1

ϕ1

Cu1

Cu2

Cu15

13Cu

ϕ1

ϕ2

VR VR

ChCh

[ ][ ] [ ]d1 R

2Q kCh k 15C V x k 115

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Buffer charge:

ϕ2

Q1[k]

Q2[k]

Q15[k]

S1

S2

S15

S1

S2

S15

Page 14: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

14 Reference Buffer

VR

VB

IB

M2

M1

freq.

log(

|Zou

t|)

≈⎛ ⎞+⎜ ⎟

⎝ ⎠2

12

1

1DC

mm

o

Zggg

MAXm

Zg

≈1

1

• M2 reduces lowfreq. Impedance

• IB not modulatedby VR

• Low voltage dropover M2 needed

37mWPower

18ΩZMAX

1ΩZDC

1.2VVR

IB

VR

M2

M1

VB

[Piessens02]

Page 15: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

15 Operational Transconductance Amplifier

Vcm

M1 M2OP1

C1 C2C3 C4

Vout

VB

ϕ2ϕ1

ϕ1 ϕ2

ϕ2

ϕ2

ϕ1

ϕ1

• Telescopic cascodefor low power

• Regulated cascodefor high DC gain

• High current forspeed

2, 4, 4, 8Pow. Scaling

53mWPower

0.75VSwing

1.9GHzGBW (70o)

90dBGDCM3 M4

OP2 M6M5

M8M7

Vin

IB

Page 16: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

16 Gain Stage• Transistors always in

saturation• Const. gain over temp.

and process variation• Good linearity• Low input capacitance• Low output impedance

500fFOutput Load

16.2mWPower< 5%Gain var. (0.6V)

2GHz3dB BW~7Gain

VBp R3

A

• gmR-constant bias

VCM R2

R1

CCM ϕ1

ϕ1 ϕ2

ϕ2

M1

M2

M3

VoutVout

VinVin

IB1

IB2

[Opris97]

Page 17: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

17 Comparator• Minimized load

at node A:High trackingspeedShort regenera-tion time

3.4mVσoffset

~1mWPower

<1ns (1µV)tlatch

2.1GHz (6dB)BW3dB

Q

Q

ϕ2 ϕ1

M1

M2

M3

M4

VB1

VB2

M5

VQ

VQ

NMOS-Latch

rst

Bootstrappedsignal: 2ϕH=Vdd+VT

A

Page 18: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

18 SNR, SNDR, and DR

-90 -80 -70 -60 -50 -40 -30 -20 -10 0-10

01020304050607080

Signal Power [dBFS]

Dynamic Range: 84dB

[dB]

Peak SNDR: 72dB

• 2.5MHz signal• Noise power integra-

ted up to 11.14MHz

Peak SNR: 82dB

Page 19: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

19 Measured Spectrum

Frequency [MHz]

Mag

. [dB

FS]

1001010.10.010.001

120

80

40

01M FFT

2.5MHz

Mag

. [dB

FS]

120

80

40

0

5MHz

Page 20: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

20 Chip Micrograph

• Separateanalog/digitalpad rings

• 0.95mm2 corearea

Page 21: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

21 Performance Summary

*Signal frequency at 2.5MHz and noise bandwidth based on main and optional (in brackets) symmetric spectral plans of VDSL.

200mW1.8V

Power ConsumptionVoltage Supply

84dB (82dB)82dB (80dB)72dB (70dB)1.6Vpp (differential)

Dynamic range*Peak SNR*Peak SNDR*Input range

0.18µm 1P6M CMOS0.95mm2

ProcessCore area

25MS/s200MHz8

Conversion RateSampling frequencyOversampling ratio

Page 22: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

22 Power Distribution

13%

7%7%3%

8%

8%

3%

6%

19%26%

Ref. bufferOTA 1OTA 2OTA 3OTA 4OTA 5Gain stageQuantizerDWAClock

Page 23: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

23 Result Comparison

50

100

80

90

70

60

Dyn

amic

Ran

ge [d

B]

Input Signal Bandwidth [Hz]1M 10M

[5]

[1]

[4]

[2] ThisWork[3]

[6]

[7]

JSSC:[1] Geerts, 2000/12[2] Vleugels, 2001/12[3] Fujimori, 2000/12[5] Feldman, 1998/10

ESSCIRC:[6] Di Giandomenico,

2003*[7] Luh, 2000*

ISSCC:[4] Reutemann, 2002

* Continuous timemodulator

Page 24: A 25MS/s 14b 200mW - University of Texas at Austin · 15 Operational Transconductance Amplifier V cm M 1 OP 1 M 2 C 3 C 1 C 2 C 4 V out V B ϕ ϕ 2 1 ϕ 1 ϕ 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1

24 Conclusions

VDSL critical ADC specifications

Oversampling limits Σ∆ ADC speed

Broadband Σ∆ ADCLow OSR + high sampling frequency

Measured 82dB SNR at 25MS/s

Best Σ∆ ADC performance