6.976 High Speed Communication Circuits and Systems

29
6.976 High Speed Communication Circuits and Systems Lecture 2 Transmission Lines Michael Perrott Massachusetts Institute of Technology Copyright © 2003 by Michael H. Perrott

Transcript of 6.976 High Speed Communication Circuits and Systems

6.976High Speed Communication Circuits and Systems

Lecture 2Transmission Lines

Michael PerrottMassachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

M.H. Perrott MIT OCW

Maxwell’s Equations

General form:

Assumptions for free space and transmission line propagation- No charge buildup ⇒ ρ = 0- No free current ⇒ J = 0

Note: we’ll only need Equations 1 and 2

M.H. Perrott MIT OCW

Assumptions

Orientation and direction- E field is in x-direction and traveling in z-direction- H field is in y-direction and traveling in z-direction- In freespace:

For transmission line (TEM mode)

yx

z

Ex

Hy

directionof travel

x

z

ExHy

b

ay directionof travel

M.H. Perrott MIT OCW

Solution

Fields change only in time and in z-direction- Assume complex exponential solution

M.H. Perrott MIT OCW

Solution

Fields change only in time and in z-direction- Assume complex exponential solution

Implications:

M.H. Perrott MIT OCW

Solution

Fields change only in time and in z-direction- Assume complex exponential solution

Implications:

But, what is the value of k ?

M.H. Perrott MIT OCW

Evaluate Curl Operations in Maxwell’s Formula

Definition

M.H. Perrott MIT OCW

Evaluate Curl Operations in Maxwell’s Formula

Definition

Given the previous assumptions

M.H. Perrott MIT OCW

Now Put All the Pieces Together

Solve Maxwell’s Equation (1)

M.H. Perrott MIT OCW

Now Put All the Pieces Together

Solve Maxwell’s Equations (1) and (2)

M.H. Perrott MIT OCW

Now Put All the Pieces Together

Solve Maxwell’s Equations (1) and (2)

M.H. Perrott MIT OCW

Connecting to the Real World

Current solution is complex

But the following complex solution is also valid

And adding them together is also a valid solution that is now real-valued

M.H. Perrott MIT OCW

Calculating Propagation Speed

The resulting cosine wave is a function of time AND position

Consider “riding” one part of the wave

Velocity calculation

yx

z

directionof travel

z

tEx(z,t)

M.H. Perrott MIT OCW

Freespace Values

Constants

Impedance

Propagation speed

Wavelength of 30 GHz signal

M.H. Perrott MIT OCW

Voltage and Current

Definitions:

x

y

a

b

H

t

w

x

z

ExHy

b

ay

I

E

M.H. Perrott MIT OCW

Parallel Plate Waveguide

E-field and H-field are influenced by plates

x

z

ExHy

b

ay

M.H. Perrott MIT OCW

Current and H-Field

Assume that (AC) current is flowing

x

z

ExHy

b

ay

I

I

M.H. Perrott MIT OCW

Current and H-Field

Current flowing down waveguide influences H-field

x

z

ExHy

b

ay

x

y

I

I

H

M.H. Perrott MIT OCW

Current and H-Field

Flux from one plate interacts with flux from the other plate

x

z

ExHy

b

ay

x

y

I

I

M.H. Perrott MIT OCW

Current and H-Field

Approximate H-Field to be uniform and restricted to lie between the plates

x

z

ExHy

b

ay

x

y

a

b

I

I

M.H. Perrott MIT OCW

Voltage and E-Field

Approximate E-field to be uniform and restricted to lie between the plates

x

z

ExHy

b

ay

a

b

J

J

x

y

EV

M.H. Perrott MIT OCW

Back to Maxwell’s Equations

From previous analysis

These can be equivalently written as

Where

M.H. Perrott MIT OCW

Wave Equation for Transmission Line (TEM)

Key formulas

Substitute (2) into (1)

Characteristic impedance (use Equation (1))

M.H. Perrott MIT OCW

Connecting to the Real World

Current solution is complex

But the following solution is also valid

And adding them together is also a valid solution

M.H. Perrott MIT OCW

Calculating Propagation Speed

The resulting cosine wave is a function of time AND position

Consider “riding” one part of the wave

Velocity calculation

yx

z

directionof travel

z

tEx(z,t)

M.H. Perrott MIT OCW

Integrated Circuit Values

Constants

Impedance (geometry dependant)

Propagation speed (geometry independent)

Wavelength of 30 GHz signal in silicon dioxide

M.H. Perrott MIT OCW

LC Network Analogy of Transmission Line (TEM)

LC network analogy

Calculate input impedance

L

C

L

C

L

C

L

Zin

M.H. Perrott MIT OCW

How are Lumped LC and Transmission Lines Different?

In transmission line, L and C values are infinitely small- It is always true that

For lumped LC, L and C have finite values

- Finite frequency range for

L

C

L

C

L

C

L

Zin

M.H. Perrott MIT OCW

Lossy Transmission Lines

Practical transmission lines have losses in their conductor and dielectric material- We model such loss by including resistors in the LC

model

The presence of such losses has two effects on signals traveling through the line- Attenuation- Dispersion (i.e., bandwidth degradation)

See Chapter 5 of Thomas Lee’s book for analysis

Zin 1/G

L

C

R

1/G

L

C

R

1/G

L

C

R LR