26 ple lassere - 133.1.141.121133.1.141.121/~nufact04_talks/talks/26_ple_lasserre.pdfT.L. (Saclay) -...

of 42 /42
Chasing θ 13 with new experiments at nuclear reactors Thierry Lasserre Saclay NuFact04, Osaka July 26 2004

Embed Size (px)

Transcript of 26 ple lassere - 133.1.141.121133.1.141.121/~nufact04_talks/talks/26_ple_lasserre.pdfT.L. (Saclay) -...

  • Chasing θ13with new experiments at nuclear reactors

    Thierry Lasserre Saclay

    NuFact04, OsakaJuly 26 2004

  • T.L. (Saclay) - NuFact04 -

    The neutrino sector[ m221 - θ12] – [ m232 - θ23] – sign( m232) - θ13 - δ

    superbeam ν+

    reactor ν

    sin2(2θ13) β & ββ0ν decays ?

  • T.L. (Saclay) - NuFact04 -

    Measurement at reactors&

    complementarity with LBL

  • T.L. (Saclay) - NuFact04 -

    νe disappearance experiment

    Pth= 8.5 GWth, L = 1,1 km, M = 5t (300 mwe)

    Best current constraint: CHOOZ

    World best constraint !

    @∆m2atm=2 10-3 eV2

    sin2(2θ13)

  • T.L. (Saclay) - NuFact04 -

    θ13 & beam experimentsLBL νµ disappearance : sin2(2θ23) 2 solutions : θ23 & π/2-θ23

    |∆m213| 2 solutions m1>m3 or m3>m1

    Appearance probability :

    • K1,K2,K3: constants known with experimental errors)• dependence in sin(2θ23), sin(θ23) 2 solutions• dependence in sign(∆m231) 2 solutions• δ-CP phase [0,2π] interval of solutions

    P(νµ→ νe) ~ K1 sin2(θ23 ) sin2(2θ13 )+ K2 sin(2θ23 ) sin(θ13 ) sign(∆m231) cos(δ)

    K3 sin(2θ23 ) sin(θ13 ) sin (δ)

    θ13 & reactor experiments• ~ a few MeV only disappearance experiments

    sin2(2θ13) measurement independent of δ-CP

    • 1-P(νe→ νe) = sin2(2θ13)sin2(∆m231L/4E) + O(∆m221/∆m231)

    weak dependence in ∆m221• a few MeV νe + short baselines negligible matter effects (O[10-4] )

    sin2(2θ13) measurement independent of sign(∆m213)si

    n2(2

    θ13

    )

    P(νµ→ νe)

    ν beam

    reactor

  • T.L. (Saclay) - NuFact04 -

    CP-δ phase induced ambiguity

    0

    0.01

    0.06 0.1 0.14

    0.03

    0.05

    0.07

    sin2(2θ13)

    P(ν µ

    ν e)

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛±≈→

    )sin(2θδsin 0.11)(2θsin

    21)νP(ν

    1313

    2eµ

    T2K measurement

    ()P

    sin δ correlation

  • T.L. (Saclay) - NuFact04 -

    θ23 induced ambiguity

    0

    0.01

    0.06 0.1 0.14

    0.03

    0.05

    0.07

    sin2(2θ13)

    P(ν µ

    ν e)

    T2K measurement

    ⎩⎨⎧

    ==

    ⇒=0.4)(θsin0.6)(θsin

    0.95)(2θsin23

    223

    2

    232

    reactor measurement

    LBL + reactor combination might help to solve the θ23 degeneracy

  • T.L. (Saclay) - NuFact04 -

    Improving CHOOZ is difficult !

  • T.L. (Saclay) - NuFact04 -

    50 years of reactor neutrino experiments …1956 Discovery of neutrinos @Savannah River - First detection of reactor neutrinos1990’s Reactor neutrino flux measurements1995 Nobel Prize to Fred Reines2002 Discovery of massive neutrinos and oscillations confirmed by KamLAND

    From discovery to metrology ! G. Mention (APC)

    Near detector Far detector

  • T.L. (Saclay) - NuFact04 -

    One nuclear plant & two detectors

    Nuclear reactor

    1,2 core(s) ON/OFF : ok4 cores ON/OFF : no !

    Near detector

    5-50 tons> 50 mwe

    Far detector

    5-50 tons> 300 mwe

    D1 = 0.1-1 km D2 = 1-3 km

    νe νe,µ,τ

    Isotropic νe flux (uranium & plutonium fission fragments) Detection tag : νe + p e+ + n, ~ 4 MeV, Threshold ~1.8 MeVDisappearance experiment: suppression+shape distortion between the 2 detectors2 IDENTICAL detectors (CHOOZ, BOREXINO/CTF type, KamLAND)

    • Minimise the uncertainties on reactor flux & spectrum (2 % in CHOOZ)• Cancel cross section uncertainties • Challenge: relative normalisation between the two detectors < 1% !

  • T.L. (Saclay) - NuFact04 -

    Improving CHOOZ is difficult …@CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst)

    StatisticsIncrease luminosity L = ∆t x P(GWth) x Np(target)Increase fiducial volume & exposure ~2700 events in CHOOZ but >40,000 for the next experiment σ < 0.5%

    Experimental error 2 detectors cancel neutrino flux and cross section systematic uncertainty [~2%]Identical detectors decrease detector systematic uncertainties [100 in the new experiment)Uncorrelated background (measurement in-situ) – Correlated backgrounds (µ induced) Underground site required: >300 m.w.e for the far site to improve CHOOZS/N equivalent for Near and Far detector (near detector could be shallower)Reactor ON/OFF measurement 1, 2, 4, or up to 7 reactor cores ?

  • T.L. (Saclay) - NuFact04 -

    nepe +→++ν

    Reactor antineutrino detection

    prompt event: delayed event:

    MeV)2.2(γ+→+ dpnEprompt ≅ Eν − En − 0.8 MeV

    • Prompt e+, EP=1-8 MeV, visible energy

    • Delayed neutron capture on Gd, ED=8 MeV

    • Prompt(β/γ) - Delayed(β/γ) pulse shape discrimination

    Time correlation: τ ∼ 30µsec

    Space correlation: < 1m3

    Anti-νe tag: νe + p e+ + n, Q~1.8 MeV Threshold

    Or Gd capture (8 MeV)

  • T.L. (Saclay) - NuFact04 -

    Why two identical detectors …un

    load

    edGd

    ~0.1

    %

    scintilla

    tor

    ν signal No ν signal

    e+

    n

    Gdn

    Gd

    e+

    e+

    H

    n

    e+

    H

    n

    ε=

    0 % In

    tera

    ctio

    n ν

    ε=

    100

    %

    spill in/out effect

    Acrylic vessel

    A ~1% irreducible systematic error from the spill in/out effect Boundary effect 2 identical inner vessels

    Scintillator doped with 0.1% Gd MUST be perfectly stable over the life time of the experiment (>5 years)

    Fiducial volume

  • T.L. (Saclay) - NuFact04 -

    Observable: e+ spectrum(Double-CHOOZ configuration)

    sin2(2θ13)=0.04sin2(2θ13)=0.1sin2(2θ13)=0.2

    sin2(2θ13)=0.04sin2(2θ13)=0.1sin2(2θ13)=0.2

    ∆m2atm = 2.0 10-3 eV2

    Near Detector: ~ 1.8 106 events-Reactor efficiency: 80%-Detector efficiency: 80%-Dead time: 50%

    Far Detector: ~ 34 000 events-Reactor efficiency: 80%-Detector efficiency: 80%

    E (MeV) E (MeV)

    Even

    ts/2

    00 K

    eV/3

    yea

    rs

  • T.L. (Saclay) - NuFact04 -

    Example of νe oscillation at reactor(Double-CHOOZ configuration )

    Rate + shape information if θ13 not too small

    @1,05 km

    Far/

    Nea

    r en

    ergy

    bin

    rat

    io

    Note: optimum baseline ~1.5km

  • T.L. (Saclay) - NuFact04 -

    Detector size scale

    Borexino300 t

    KamLAND1000 t

    Reactor/θ13Example ~20 t

    CHOOZ5 t

    DoubleCHOOZ

    &KASKA

    (10 tons)

    X 2

    Angra, Daya-Bay, Braidwood

  • T.L. (Saclay) - NuFact04 -

    90% C.L. sensitivity if sin2(2θ13)=0

    Reactor1 (0.5 km, 2.3 km): ~13 tonsPXE x 10 GW x 3 years sin2(2θ13)

  • T.L. (Saclay) - NuFact04 -

    Huber, Lindner, Schwetz & Winter (‘extremum’ of projection of the χ2 manifold on the sin2(2θ13) axis)

    Double-CHθ13θ13Z

    sin2(2θ13) at LBL & reactors

    CHOOZ alone90% C.L

    @∆m2=2.0 10-3 eV2

    (3 ktons ?)

  • T.L. (Saclay) - NuFact04 -

    Current proposal for new reactor experiments …

  • T.L. (Saclay) - NuFact04 -

    Nuclear reactors in the world

  • T.L. (Saclay) - NuFact04 -

    World momentumDecember 2002: First European meeting, MPIK HeidelbergApril 2003: Second European meeting, PCC, ParisMay 2003: First international workshop, University of Alabama, USOctober 2003: Second international workshop, TUM, GermanyMarch 2004: Third international workshop, Niigata, JapanNext workshop in Brazil, January 2005

    125 authors, 40 Institutions White Paper Report on Using Nuclear Reactors to search for a value of theta 13 hep-ex/0402041

  • T.L. (Saclay) - NuFact04 -

    Which site for the experiment ?

    Diablo Canyon

    Braidwood

    Angra

    PenlyChoozCruas

    Krasnoyarsk

    Taiwan

    Kashiwasaki

    One reactor complexTwo underground cavities @0.1-1 km & ~1-2 km

    Daya bay

  • T.L. (Saclay) - NuFact04 -

    The Krasnoyarsk site: Kr2DetRussian Research Center “Kurchatov Institute”

    Completely underground facility was used by the Soviets for weapons production.

    Single reactor coreP=1.6 GWthON/OFF cycle [50 days ON & 7 days OFF]

    No civil construction

    >50 tons detectorsNear: >50 tons – 115 m – 600 mweFar: >50 tons - 1.1 km - 600 mwe

    Sensitivity0.5% systematic errorsin2(2θ13) < 0.015 (∆m2 =2.5 10-3 eV2, 90% C.L.)

    ProspectsVisit in summer 2003 cancelled by Russian authoritiesSite not available for “political” reasons

  • T.L. (Saclay) - NuFact04 -

    Current proposals

    Braidwood

    Angra

    Double-Chooz

    Kaska

    Daya bay

    1st generation: sin2(2θ13)~0.01-0.03

    2nd generation: sin2(2θ13)~0.01 + shape only analysis

  • T.L. (Saclay) - NuFact04 -

    Braidwood (Illinois)Two reactor cores

    P=2 x 3.6 GWth

    Civil constructionFlat topology Near & Far: 120m shafts (10m diameter) + laboratories (25-35 M$)

    Two 50 tons detectorsNear: 25-50 tons – 300 m – 450 mweFar: 25-50 tons – 1.5-1.8 km - 450 mweMovable detector (move on the surface, lift with crane)

    3 years Sensitivity0.5% systematic errorNo signal: sin2(2θ13) < 0.01 (90% C.L.)

    Prospects (not yet approved)Construction in 39 month - running in 2009. Cost ~45 M$Geological studies ongoing

  • T.L. (Saclay) - NuFact04 -

    Braidwood (Illinois)

    Civil construction

    Detector sketch

    ANL, Chicago, Columbia, FNAL, Kansas, Oxford, Pittsburgh, Texas

  • T.L. (Saclay) - NuFact04 -

    Daya BayFour reactor cores

    P=4 x 2.9 = 1.6 GWth+ two new cores for 6 GWth in 2011

    Civil constructionNear: 1 km tunnel + laboratoryFar: 2 km tunnel + laboratory

    ~10 tons detector modulesNear: 25 tons - 300 m – 200 mweFar: 50 tons - 1.5-1.8 km - 700 mweMovable detector concept

    Sensitivity0.4% systematic errorsin2(2θ13) < ~ 0.01 (90% C.L.) ?

    Prospects (not yet approved)2004-05: R&D, 2006-07: Construction1 Near detector running in 2008Geological & safety studies ongoing

  • T.L. (Saclay) - NuFact04 -

    Daya Bay

    Near detector: 2 x 10 tons modulesFar detector: 4 x 10 tons modules 3 years of data takingsin2(2θ13) < ~ 0.01-0.02 (90% C.L.)

    IHEP, CIAE, Tsinghua Univ., Hong Kong Univ., Hong Kong Chinese Univ, (Berkeley, Caltech)R&D

  • T.L. (Saclay) - NuFact04 -

    Kaska (Kashiwasaki, Japan)Seven reactor cores

    P=24.3 GWth2 near detector mandatory

    Civil construction2 Near: ~70 m 6m shafts + laboratoriesFar: ~250 m 6m shaft + laboratory

    Multiple detectors2 Near: 8 tons – 300-400 m – 100 mweFar: 8 tons - 1.3-1.8 km - 500 mwe

    Sensitivity0.5% systematic errorsin2(2θ13) < 0.025 (90% C.L.)

    Prospects (not yet approved)2004-05: R&D, 2006-07: Construction. Running in 2008. Cost ~20 M$Geological studies ongoing – Prototype to be built for R&D.

  • T.L. (Saclay) - NuFact04 -

    KASKA (Japan)Tohoku Univ., Niigata Univ., Rikkyo Univ., KEK, Kobe Univ.Tokyo Institute of Technology, Tokyo Metropolitan Univ.

    Sensitivity (3 years): sin2(2θ13)

  • T.L. (Saclay) - NuFact04 -

    Near site: D~100-200 m, overburden 50-80 mweFar site: D~1.1 km, overburden 300 mwe

    2Cores

    EDFOpérateur

    FramatomeConstructeur

    66, 57(%, in to 2000)

    1996/1997Couplage

    8.4 GWthPower

    PWRType

    Chooz-Far

    Chooz-Near

    Double-Chooz (France)

  • T.L. (Saclay) - NuFact04 -

    Double-Chooz featuresTwin reactor cores

    N4 type P=2x4.2 GWth

    Civil constructionNear: 20x10x5m experimental hallArtificial overburden

    Two 10 tons detectorsNear: 100-200 m – 60-80 mweFar: 1.05 km - 300 mwe

    3 years Sensitivity0.6% systematicsNo signal: sin2(2θ13) < 0.02-03 (90% C.L.)Signal: sin2(2θ13) > 0.04-05 (3σ)

    Prospect (approved & funded in France)2007: far detector running 2008: near detector runningCost ~7Meuros + civil constr.

    Near detector site (to be built)

    Existing Far detector site

    @DAPNIA

  • T.L. (Saclay) - NuFact04 -

    The CHOOZ-far detector

    CHOOZ existing pit

    Non scintillating buffer: scintillator+quencher(r+0.95m, , V=100 m3)

    γ-catcher: 80% dodecane + 20% PXE(acrylic, r+0,6m – V= 28,1 m3)

    7 m

    7 m

    PMT supporting structure

    Muon VETO: scintillating oil (r+0.6 m – V=110 m3)

    7 m

    Shielding: 0,15m steel

    ν target: 80% dodecane + 20% PXE + 0.1% Gd(acrylic, r=1,2m, h = 2,8m, 12,7 m3)

    @DAPNIA

  • T.L. (Saclay) - NuFact04 -

    Reactor induced systematics

    2.1%

    0.6%

    0.7%

    1.9%

    CHOOZ

    O(0.1%)-Σ

    O(0.1%)-E/Fission

    O(0.1%)-Thermal power

    O(0.1%)-Flux, cross section

    Reactor

    2 identical detectorLow background

    FutureExperiment

    Error typesystematics

    2 detectors cancellation of the reactor physical uncertainties

  • T.L. (Saclay) - NuFact04 -

    Detector induced systematics

    ?

    1.0%

    0.3%

    1.2%

    0.3%

    CHOOZ

    X

    Sim.Monte-Carlo

    0.25%0.25%Live time

    O(0.1%)1.0%« Spill in/out » effect

    0.2%0.2%Target volume

    O(0.1%)1.2%% H

    O(0.1%)0.3%Scintillator density

    Detector

    2 identical detectorLow backgrounds

    FutureExperiment

    Error typesystematics

    M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

    A single scintillator batch will be prepared to fill both detectors with the same apparatus

  • T.L. (Saclay) - NuFact04 -

    Relative Normalisation: [email protected]: 1.5% systematic error

    - 7 analysis cuts- Efficiency ~70%

    Sélection cuts- positron energy [energy threshold]- e+ position/géode (30cm) [position reconstruction]- neutron energy [energy cut - calibration]- n pos./géode (30 cm) [position reconstruction]- distance e+ - n [position reconstruction]- ∆t e+ - n [neutron capture on Gd]- n multiplicity [level of accidental background]

    Goal Double-CHOOZ:

  • T.L. (Saclay) - NuFact04 -

    Attempt to compare Double-Chooz withT2K (3σ discovery potential)

    sin22θ13 = 0.14 sin22θ13 = 0.08Sin2(2θ13) = 0.04

    Double-CHOOZ starts with two detectors in January 2008T2K starts at FULL intensity in January 2010Assumption

    From Huber, Lindner, Schwetz(hep/0405032) 90% C.L.

    3σ C.L.

  • T.L. (Saclay) - NuFact04 -

    Letter of Intent

    Th. Lasserre

    + Univ. Alabama - Univ. Louisiana - Univ. Tennessee -Univ. Drexel – Argonne

  • T.L. (Saclay) - NuFact04 -

    Double-Chooz & IAEAIAEA :Intenational Agency for Atomic Energy

    Missions: Safety & Security, Science & Technology, Safeguard & VerificationControl that member states do no use civil installations with military goals (production of plutonium !)

    •Control of the nuclear fuel in the whole fuel cycle *•Fuel assemblies, rods, containers * (*Anti-neutrinos could play a role!)•Distant & unexpected controls of the nuclear installations *

    Why IAEA is interested to antineutrino ? •IAEA wants the « state of the art »methods for the future !•Cost issue … 10,000$/day/inspector …

    AIEA wants a feasibility study on antineutrinos•Monitoring of the reactors with a Double-Chooz like detector ?•Monitoring a country – new reactors “à la KamLAND”

    Double-CHOOZ-IAEA: CEA/Saclay + Subatech Nantes + Kurchatov•Perform new antineutrino spectrum @ILL reactor•Use Double-Chooz near as a ‘prototype’ for nuclear reactor monitoring•Other studies like large and very large underwater antineutrino detectors …

  • T.L. (Saclay) - NuFact04 -

    Towards evidence of non vanishing δH

    . Minakata

    & H. Sugiyam

    a, hep-ph/0309323• T2K: 10 years running (0.75MW beam & Super-Kamiokande)• Reactor (second generation): 103 104 GWth.ton.year

    Regions consistent with the hypothesis δ=0 (90% CL)

    By the reactor-LBLcombined measurement

    Reactor [103 GW.t.y]@ ~1km200 tons10 GWth5 years

  • T.L. (Saclay) - NuFact04 -

    Single reactor coreP=4.1 GWthA new core is being built (2006)

    Civil constructionNear: 6x6x60m tunnel + 10x10x12m exp. hallFar: 6x6x450m tunnel + 10x10x12m exp. hall+ emergency shafts

    Two >100 tons detectorNear: 300 m – 50 mwe ?Far: 1.35 km - 600 mweNon movable detectors concept

    Sensitivity5 years >103 GWth.t.ysin2(2θ13) < 0.01 (90% C.L.)1% systematic errorShape only analysis

    2nd generation project: Angra (Brazil)Argonne + Brazil : CBPF, UNICAMP, USP, PUC-RIO

  • T.L. (Saclay) - NuFact04 -

    Conclusion & outlookA new reactor neutrino experiment could provide an evidence of the oscillation in the (1,3) sector in 2009

    Reactor & LBL programs provide independent and complementarymeasurements of θ13. But current proposals have low synergy …

    Of course reactor experiments won’t replace the rich LBL program. However, a preliminary value of θ13 might help to design the best CP-δdetector:

    Several projects of reactor experiment & strong world momentumFirst generation : sensitivity sin2(2θ13)~0.02-0.03 - Rate + Shape

    Motionless detectors: Double-Chooz (funded in France), KASKAMovabledetectors: Daya-bay, Braidwood

    Second generation : sensitivity sin2(2θ13)103 GWth.tons.years):Motionless detectors: Angra

    )()()2sin(

    1)2sin(

    )sin(1.0)()()()(

    2/11313

    syststatNPP

    PPA

    ee

    eecp ±±∝→−→

    →−→=

    θθδ

    νννννννν

    µµ

    µµ