(1405) in chiral dynamics...16 Summary 1 : KN interaction We derive the single-channel local...

35
1 2008, Mar. 18th Λ(1405) in chiral dynamics TU München a YITP, Kyoto b Tetsuo Hyodo a,b

Transcript of (1405) in chiral dynamics...16 Summary 1 : KN interaction We derive the single-channel local...

  • 12008, Mar. 18th

    Λ(1405) in chiral dynamics

    TU Münchena YITP, Kyotob

    Tetsuo Hyodoa,b

  • KN int. below threshold

    KN

    πΣ

    KN scatt.?

    energy2

    Introduction : (well) known facts on Λ(1405)

    Mass : 1406.5 ± 4.0 MeVWidth : 50 ± 2 MeVDecay mode : 100%

    Introduction : Λ(1405)

    Coupled channel multi-scattering

    R.H. Dalitz, T.C. Wong and G. Rajasekaran, PR153, 1617 (1967)

    “naive” quark model : p-wave ~1600 MeV?

    N. Isgur and G. Karl, PRD18, 4187 (1978)

    Λ(1405)

    Two poles?

    KNπΣ

    reim

  • 3

    Contents

    Phenomenology of KN interaction

    Structure of the Λ(1405)

    Contents

    T. Hyodo, W. Weise, 0712,1613 [nucl-th], Phys. Rev. C, in press.

    T. Hyodo, D. Jido, L. Roca, 0712.3347 [hep-ph], Phys. Rev. D, in press.

    T. Hyodo, D. Jido, A. Hosaka, 0803.2550 [nucl-th]

    A. Doté, T. Hyodo, W. Weise, 0802.0238 [nucl-th], Nucl. Phys. A, in press

    ・Construction of local KN potential by chiral dynamics

    ・Application to three-body KNN system

    ・Nc Behavior and quark structure

    ・Dynamical or CDD (genuine quark state) ?

    ・Introduction to the chiral unitary approach

  • 4

    Chiral unitary approach and Λ(1405)

    N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995)E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998)J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001)M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

    S = -1, KN s-wave scattering : Λ(1405) in I=0

    strong attraction (

  • 5T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C68, 018201 (2003)

    200

    150

    100

    50

    0

    !T [

    mb

    ]

    300200100

    K-p

    70

    60

    50

    40

    30

    20

    10

    0300200100

    "0#

    200

    150

    100

    50

    0300200100

    "+$%

    60

    50

    40

    30

    20

    10

    0

    !T [

    mb

    ]

    300200100Plab [MeV/c]

    K0n

    60

    50

    40

    30

    20

    10

    0300200100

    Plab [MeV/c]

    "0$0

    80

    60

    40

    20

    0300200100

    Plab [MeV/c]

    "%$+

    Total cross sections of K-p scatteringChiral unitary approach and Λ(1405)

  • 1660168017001720 -20

    -40-60-800.05

    0.100.150.200.25

    0.050.100.15

    0.200.25

    Λ(1670)

    z=1690-22i

    Re[z]

    Im[z]

    |T|

    6

    Description of the resonancesPoles of the amplitude : resonance

    Tij(√

    s) ∼ gigj√s − MR + iΓR/2

    1360

    1380

    1400

    1420

    1440

    -20

    -40

    -60

    -80

    0.5

    1.0

    1.5

    0.5

    1.0

    1.5

    !(1405)

    Re[z]Im[z]

    |T|

    Chiral unitary approach and Λ(1405)

    Real part MassImaginary part Width/2

    Residues Couplings

    ♦Successful description of KN scattering♦Two poles for the Λ(1405)

  • 7

    Deeply bound (few-body) kaonic nuclei?Motivation

    K- + p

    MeV-27K=E

    MeV04=Γ

    1 2 3 r fm0

    -50

    -200

    -300

    -400

    -500

    nucl

    KUMeV

    Λ(1405)Σ+π

    Λ+π

    K- + pp

    MeV-48K=E

    MeV61=Γ

    1 2 3 r fm0

    -50

    -200

    -300

    -400

    -500

    nucl

    KUMeV

    H2

    KΣ+π

    Λ+π

    K- + 3He

    MeV-108K=E

    MeV02=Γ

    1 2 3 r fm0

    -50

    -200

    -300

    -400

    -500

    nucl

    KU

    MeV

    H3

    K

    Σ+π

    Λ+π

    Y. Akaishi & T. Yamazaki, Phys. Rev. C 65 (2002) 044005

    T. Yamazaki & Y. Akaishi, Phys. Lett. B 535 (2002) 70

    Potential is purely phenomenological.What does chiral dynamics tell us about it?

  • 8

    Construction of the effective interaction

    Effective interaction based on chiral SU(3) dynamics

    Coupled-channel BS + real interaction

    Result of chiral dynamics --> single channel potential

    few-body kaonic nuclei(exact)

    Single-channel BS + complex interaction

    (approximate)Schrödinger equation + local potentialcomplex, energy-dependent

  • 9

    Construction of the single channel interactionChannels 1 and 2 --> effective int. in 1

    Construction of the effective interaction

    tree effect of channel 2

    Equivalent to the coupled-channel equations

    single channel

  • -15

    -10

    -5

    0

    Vef

    f [fm

    ]

    1440140013601320!s [MeV]

    Im Veff, full

    I=0

    -14

    -13

    -12

    -11

    -10

    -9

    Vef

    f [fm

    ]

    1440140013601320!s [MeV]

    V (tree) Re Veff, full

    I=0

    10

    Single channel KN interaction with πΣ dynamicsConstruction of the effective interaction

    effect of πΣ

    Strength : comparable with the WT term~ 1/2 of phenomenological (Akaishi-Yamazaki) potentialeffect of πΣ resummation in KN channel is not large

  • 4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320!s [MeV]

    Re F, full

    KN(I=0)

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    F !" [f

    m]

    1440140013601320!s [MeV]

    !"(I=0)

    Im F, full

    11

    Scattering amplitude in KN and πΣConstruction of the effective interaction

    Binding energy : B = 15 MeV 30 MeV

    Resonance in KN : around 1420 MeV

  • Very strong attraction in KN (higher energy) --> bound stateStrong attraction in πΣ (lower energy) --> resonance

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Im z

    [MeV

    ]1440140013601320

    Re z [MeV]

    !" resonance

    KN bound stateWithout off-diagonal

    KNπΣ

    12

    Origin of the two-pole structure

    KN πΣ

    Two poles : natural consequence of chiral interaction

    Construction of the effective interaction

    Chiral interaction

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Im z

    [MeV

    ]1440140013601320

    Re z [MeV]

    !" resonance

    z2(full)

    z1(full)

    KN bound state

    KNπΣ

    higher order correction? --> theoretical uncertainty (later)B. Borasoy, R. Nissler, W. Weise, Eur. Phys. J. A25, 79-96 (2005)

  • 13

    Comparison with phenomenological potential

    KN πΣ

    Construction of the effective interaction

    Chiral interaction phenomenologicalT. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007)

    Absence of πΣ diagonal coupling--> absence of πΣ dynamics, resonance--> strong (×2) attractive interaction in KN

    KN πΣ

    πΣ -> πΣ attraction : flavor SU(3) symmetryenergy dependence : derivative coupling

  • 4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320!s [MeV]

    Re (original)

    I=0

    0.8

    0.6

    0.4

    0.2

    0.0

    F KN

    [fm

    ]

    1440140013601320!s [MeV]

    Im (original)I=1

    14

    KN amplitude with local potentialConstruction of the effective interaction

    : to reproduce the resonance

    4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320!s [MeV]

    Re (local) Re (original)

    I=0

    0.8

    0.6

    0.4

    0.2

    0.0

    F KN

    [fm

    ]

    1440140013601320!s [MeV]

    Im (local) Im (original)

    I=1

    Deviation at lower energy : BS eq. local potential + Schrödinger eq.

    agreement around threshold : OK

  • 15

    Correction of the strength of the potentialConstruction of the effective interaction

    4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320s1/2 [MeV]

    Re (corrected) Re (original)

    I=0

    -1000

    -800

    -600

    -400

    -200

    0

    U(0

    ) [M

    eV]

    1440140013601320s1/2 [MeV]

    I=0

    0.8

    0.6

    0.4

    0.2

    0.0

    F KN

    [fm

    ]

    1440140013601320s1/2 [MeV]

    Im (corrected) Im (original)

    I=1

    -500

    -400

    -300

    -200

    -100

    0

    U(0

    ) [M

    eV]

    1440140013601320s1/2 [MeV]

    I=1

    Pote

    ntia

    lAm

    plitu

    de

  • 16

    Summary 1 : KN interactionWe derive the single-channel local potential based on chiral SU(3) dynamics.

    Resonance structure in KN appears at around 1420 MeV

  • 17

    Application to three-body K-pp systemApplication to the few-body anti-K system

    Hamiltonian : Realistic interactions

    Model wave functionSelf-consistency of kaon energy and KN interaction

    JP = 0- , T = 1/2, T3 = 1/2

    TN = 1, dominant, used in Faddeev

    TN = 0

    Realistic NN potential (Av18)KN potential based on chiral SU(3) dynamics (real part)dispersive effect from imaginary part~ 3-4 MeV in two-body KN system

  • 18

    Theoretical uncertaintiesApplication to the few-body anti-K system

    Different models of chiral dynamics

    -100

    -80

    -60

    -40

    -20

    0

    Im z

    [MeV

    ]

    14401420140013801360Re z [MeV]

    z2(BMN)z2(HNJH)

    z2(ORB)

    z1(HNJH)z1(ORB)

    z1(BMN)z2(BNW)

    z1(BNW)

    Two options for two-body energy

    Define antikaon “binding energy”Energy dependence of KN interaction

    4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320s1/2 [MeV]

    I=0

    4

    2

    0

    -2

    F KN

    [fm

    ]

    1440140013601320s1/2 [MeV]

    I=0

    ~1420 MeV-1200

    -1000

    -800

    -600

    -400

    -200

    0

    U(0

    ) [M

    eV]

    1440140013601320s1/2 [MeV]

    I=0, corrected

    HNJH

    ORBBNW

    BMN

  • 19

    Summary 2 : K-pp systemWe study the K-pp system with chiral SU(3) potentials in a variational approach.

    With theoretical uncertainties,

    Application to the few-body anti-K system

    B.E.Γ(πYN)

    = 19 ± 3 MeV= 40 ~ 70 MeV

    Phenomenological potential (~ 2 times stronger than ours)

    B.E.Γ

    ~ 48 MeV~ 60 MeV

    No two-nucleon absorption : KNN -> YN ... small?

    Faddeev with chiral interaction(separable, non-rel, ...?)

    B.E.Γ

    ~ 79 MeV~ 74 MeV

    Y. Ikeda, T. Sato, Phys. Rev. C76, 035203 (2007)

    T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007)

    A. Doté, T. Hyodo, W. Weise, 0802.0238 [nucl-th], Nucl. Phys. A, in press

  • 20

    Structure of dynamically generated resonancesQuark structure of resonances? analysis of Nc scaling

    J.A. Oller, E. Oset and J.R. Pelaez, Phys. Rev. D59, 074001 (1999)G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B321, 311 (1989)

    c.f. ρ meson in ππ scattering ρ ~ qq

    Nc behavior and quark structure

    can be used to distinguish qq from others

  • 21

    Introduce the Nc scaling into the model and study the behavior of resonance.

    Nc scaling in the model

    Leading order WT interaction

    c.f. meson-meson scattering : = trivialNontrivial Nc dependence of the interaction is in NLO.

    T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006)T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. D75, 034002 (2007)

    (for baryon and Nf > 2)

    has Nc dep.

    Nc behavior and quark structure

  • 22

    S = -1, I = 0 channel in SU(3) basis

    1 8 8 27

    Coupling strengths with Nc dependence

    C ∝ Nc : finite interaction at Nc -> ∞Attractive interaction in singlet channel

    Nc behavior and quark structure

  • 23

    S = -1, I = 0 channel in Isospin basis

    KN πΣ ηΛ KΞ

    Coupling strengths with Nc dependence

    Attractive interaction in KN -> KNKΞ -> KΞ : attractive -> repulsive for Nc > 9

    Off-diagonal couplings vanish at Nc -> ∞--> single-channel problem @ large Nc limit

    Nc behavior and quark structure

  • 24

    In the large Nc limitNc behavior and quark structure

    Attractive interaction in KN(singlet) channels

    Critical coupling strength (with Nc dep)

    Ccrit(Nc) =2[f(Nc)]2

    m[−G(MT (Nc) + m)]

    -20

    -10

    0

    10

    20

    Coup

    ling

    stren

    gths

    (dim

    ensio

    nles

    s)

    20151050

    Nc

    Ccrit 1 8 27

    Nc = 3

    Bound state in “1” or KN channels

  • 25

    With SU(3) breaking : Pole trajectories around Nc = 3

    1 bound state and 1 dissolving resonance

    ~ non-qqq (i.e. dynamical) structure

    Nc scaling of (excited) qqq baryon

    T.D. Cohen, D.C. Dakin, A. Nellore, Phys. Rev. D69, 056001 (2004)

    -250-200-150-100

    -500

    Im W

    [MeV

    ]

    2001000-100Re W - MN - mK [MeV]

    z1(Nc=3)

    z2(Nc=3)

    z2(12)

    z1(12)

    Nc behavior and quark structure

  • 26

    Isospin conponents of the polesResidues in the isospin basis

    dissolvingother components

    bound stateKN dominant

    1.0

    0.5

    0.0

    |g_i

    | / |g

    _KN

    |

    119753Nc

    i = !" i = #$ i = K%

    z1 pole4

    3

    2

    1

    0|g

    _i| /

    |g_K

    N|

    119753Nc

    z2 pole

    Nc behavior and quark structure

  • 27

    SU(3) components of the polesResidues in the SU(3) basis

    bound state1 dominant

    dissolvingother components

    2.0

    1.5

    1.0

    0.5

    0.0

    |g_i

    | / |g

    _1|

    1210864Nc

    i = 8 i = 8' i = 27

    z1 pole7

    6

    5

    4

    3

    2

    1

    0

    |g_i

    | / |g

    _1|

    1210864Nc

    i = 8 i = 8' i = 27

    z2 pole

    Nc behavior and quark structure

  • 28

    Summary 3 : Nc behavior of Λ(1405)

    Large Nc limit

    Behavior around Nc = 3

    Existence of a bound state in “1” or KN channel even in the large Nc limit

    1 bound state and 1 dissolving pole: signal of the non-qqq state.Residues of the would-be-bound-state : dominated by “1” or KN: consistent with large Nc limit.

    We study the Nc scaling of the Λ(1405)

    T. Hyodo, D. Jido, L. Roca, 0712.3347 [hep-ph], Phys. Rev. D, in press.

    Nc behavior and quark structure

  • 29

    Structure of dynamically generated resonancesResonances ~ quasi-bound two-body states

    in some case, CDD pole (genuine state).

    Dynamical or CDD

    Renormalization change of loop function ~ change of interaction kernel

    Formulation of the N/D method and the structure of low energy interaction

  • 30

    Renormalization schemesDynamical or CDD

    Scattering amplitude in N/D method

    G : unitarity cutV : other contribution (e.g. CDD pole)

    For meson-baryon scattering・Identify G as loop function・Matching with ChPT order by order・V is given by ChPT (interaction kernel)

    --> equivalent to solving BS equation

  • 31

    Renormalization schemesDynamical or CDD

    Renormalization procedure

    c. f. K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

    G(µ) = 0, ⇔ T (µ) = V (µ) at µ = MT

    Natural renormalization scheme: determine G to exclude CDD pole contribution, V is to be determined

    Phenomenological scheme: V is given by ChPT, fit cutoff in G to data

    Same physics (scattering amplitude)

  • 32

    Pole in the effective interaction

    ↑data fit ↑given

    pole!

    Physically meaningful pole :

    Dynamical or CDD

    ** energy scale of the effective pole **

    Interaction kernel in natural scheme↑ChPT

  • 0.03

    0.02

    0.01

    0.00

    -0.01

    -0.02

    !V

    [MeV

    -1]

    1800160014001200

    s1/2 [MeV]

    !V11 !V22 !V33 !V44

    4

    3

    2

    1

    0!

    V [M

    eV-1

    ]

    1800160014001200

    s1/2 [MeV]

    !V11 !V22 !V33 !V44

    33

    Example : Λ(1405) and N(1535)

    Origin of resonances?

    Dynamical or CDD

    1.7 GeV8 GeV

  • 34

    Summary 4 : dynamical or CDD?

    Natural renormalization

    Analysis of Λ(1405) and N(1535)Λ(1405) : CDD pole would be smallN(1535) : appreciable contribution from CDD pole

    We study the origin of the resonances in the chiral unitary approach

    Dynamical or CDD

    T. Hyodo, D. Jido, A. Hosaka, 0803.2550 [nucl-th]

    Exclude CDD pole contribution from the loop function, consistent with N/D

  • 35

    Summary 5 : Structure of Λ(1405)

    Analysis of Nc behavior

    Analysis of natural renormalizationNMB dominates

    Schematic decomposition of Λ(1405)

    N3