Stephen Parke Fermilab · 2019-01-24 · - 3 Ben Lee, Mary K Gaillard, Shirley Jackson & Tong...

Post on 20-Mar-2020

4 views 0 download

Transcript of Stephen Parke Fermilab · 2019-01-24 · - 3 Ben Lee, Mary K Gaillard, Shirley Jackson & Tong...

Stephen Parke IFT - UAM 1/24/2019 # 2

Stephen ParkeFermilab

2

1

3

νs

ν4—

Lessons and prospects from the past, present and

future of \nu_e disappearance experiments

Stephen Parke IFT - UAM 1/24/2019 # 3

Ben Lee, Mary K Gaillard, Shirley Jackson & Tong Pagnamenta

“can live and work with pride and dignity without regard to such differences as race, religion, sex or national origin. In conflict between technical expediency and human rights, we will stand on the side of human rights.” Wilson 1970

some members of the Fermilab Theory Group 1974:

Stephen Parke IFT - UAM 1/24/2019 # 4

2

1

3

Interactions:

simple complicated

Propagation:

simplecomplicated

=Uunitary matrix ?

masses ?

Stephen Parke IFT - UAM 1/24/2019 # 5

W+→ µ+

νµW+→ e+νe

W+→ τ

+ντ

Neutrino Flavor or Interaction States:

νe νµ ντ

!

provided L/E 0.5 km/MeV = 500 km/GeV !!!

1 picosecond in Neutrino rest frame !!!

Stephen Parke IFT - UAM 1/24/2019 # 6

ν1 ν2 ν3

νe =

Neutrino Mass EigenStates or Propagation States:

Propagator νj → νk = δjk e−i

m2jL

2Eν

!

∆m2

21∼ 7.5 × 10

−5eV

2

∼ ×

|∆m2

31| ≈ |∆m

2

32| ∼ 2.5 × 10

−3eV

2

Stephen Parke IFT - UAM 1/24/2019 # 7

Neutrino Mass EigenStates or Propagation States:

νe = νµ =

ντ =

most νe

ν1 ν2least νe

ν3

θ23δ,θ23 δ,θ23

Solar Exp, SNOKamiLANDDaya Bay, RENO, …

SuperK, K2K, T2KMINOS, NOvAICECUBE

UnitaritySK, OperaICECUBE ?

Stephen Parke IFT - UAM 1/24/2019 # 8

ν1, ν2 Mass Ordering:

ν1

ν2 ν1

ν2

mass

|∆m221| = |m2

2 − m21| = 7.5 × 10−5

eV2

| 21| | 2 − 1| ×

L/E = 15 km/MeV = 15, 000 km/GeV

SNO m2 > m1

–solar mass ordering

νe = νµ =

ντ =

Stephen Parke IFT - UAM 1/24/2019 # 9

mass

ν3

ν2

ν1

ν3

ν1

ν2

ν3, ν1/ν2 Mass Ordering:–atmospheric mass ordering

|∆m2

31| = |m2

3− m2

1| = 2.5 × 10

−3 eV2

| | | − | ×

L/E = 0.5 km/MeV = 500 km/GeV

νe = νµ =

ντ =

Unknown: NOνA, JUNO, ICECUBE, DUNE, T2HKK....

Stephen Parke IFT - UAM 1/24/2019 # 10

sin2Θ13

1

2

3

sin2Θ12

sin2Θ23

1

"1

1

"1

1

"1

cos ∆ $

NORMAL

Νe ΝΜ ΝΤ

NeutrinoMassSquared

Fractional Flavor Content varying cos ∆

(msol2

(matm2

! !sinΘ13

! !sinΘ13

sin2Θ13

1

2

3

cos ∆ $

1

"1

1

"1

1

"1

sin2Θ23

sin2Θ12

INVERTED

(msol2

(matm2

! !sinΘ13

! !sinΘ13

|Uαj|2

CPT ⇒ invariant δ ↔ −δ

• Labeling massive neutrinos: |Ue1|2 > |Ue2|

2 > |Ue3|2

sin2θ12 ∼

1

3

sin2θ23 ∼

1

2

sin2θ13 ∼ 0.02

0 ≤ δ < 2π

|∆m2

31| = |m2

3− m2

1| = 2.5 × 10

−3 eV2

| | | − | ×

L/E = 0.5 km/MeV = 500 km/GeV

|∆m221| = |m2

2 − m21| = 7.5 × 10−5

eV2

| 21| | 2 − 1| ×

L/E = 15 km/MeV = 15, 000 km/GeV

Summary:

Stephen Parke IFT - UAM 1/24/2019 # 11

Unitarity

6 row/column plus 6 triangle conditions

2 row and 1 triangle, independent of ντ

Ross-Lonergan+ SP 1508.05095

Stephen Parke IFT - UAM 1/24/2019 # 12

∆ij ≡∆m2

ijL

4E

kinematic phase:

νe → νe and νe → νe

Stephen Parke IFT - UAM 1/24/2019 # 13

REACTOR NEUTRINOS:

P (νe → νe) = 1− P13 − P12 with

P13 = 4|Ue3|2(|Ue1|

2 sin2∆31 + |Ue2|2 sin2∆32)

= sin2 2θ13 (cos2θ12 sin

2∆31 + sin2 θ12 sin

2∆32),

P12 = 4|Ue2|2|Ue1|

2 sin2∆21 = sin2 2θ12 cos4θ13 sin

2∆21,

∆ij ≡∆m2

ijL

4E

Daya BayRENO

D-ChoozKamLAND

JUNO

θ13

θ13

θ12

θ12

sin22θ13

cos 2θ12 sin22θ13

≈ 0.4 sin22θ13

Stephen Parke IFT - UAM 1/24/2019 # 14

Reactor θ13 Experiments

@"Yonggwang,"Korea

RENO'

@"Daya"Bay,"China

Daya'Bay'@"Chooz,"France

Double'Chooz'

zex

perim

entsite

confi

gura

tion

.W

esh

owalso

onth

isfig

ure

cate

don

this

particul

arcu

rvewill

rece

iveth

esa

mere

ac

tan

d55

.5%

from

Eas

tre

acto

r.The

near

dete

ctor

Stephen Parke IFT - UAM 1/24/2019 # 15

13θ22sin

0 0.05 0.1 0.15 0.2

)2

eV

-3

(10

ee2

m∆

2

2.5

3

3.5Rate+SpectrumRate-only

99.7% C.L.95.5% C.L.68.3% C.L.

0 0.05 0.1 0.15 0.2

2 χ∆ 2

46 Rate+Spectrum

Rate-only

2χ∆0 2 4 6

2

2.5

3

3.5

RENO 2200 days

(km/MeV)νE/effL

0 0.2 0.4 0.6 0.8

)eν

→ eν(

P

0.9

0.95

1

Far Data

Near Data

Prediction from near data

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.1050

2

4

6

8

10 h2

Entries 0

Mean 0

RMS 0

)13θ(22sin

0.07 0.08 0.09 0.1

]2

eV

-310

× [

ee

2m

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2χ∆

2 4 6 8 10

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2

4

6

8

10

Daya Bay 1958 days

2 4 6 8 10 12

[MeV]promptE2 4 6 8 10 12F

ar/

Near(

Weig

hte

d)

0.9

0.95

1

~3%

What is ∆m2

ee?

Stephen Parke IFT - UAM 1/24/2019 # 16

0.2 0.4 0.6 0.8 1.0

0.92

0.94

0.96

0.98

1.00

) = 1− P13

3 curves:NOIO

Approx

L/E (km/MeV)

P13 ≈ sin2 2θ13 sin2∆ee

∆m2

ee≡ cos2 θ12 ∆m2

31+ sin2 θ12 ∆m2

32

∆m2

eeis νe average of ∆m

2

31and ∆m

2

32

Nunokawa, SP, Zukanovich Funchal hep-ph/0503283NPZ=

RENO uses this defn:

| | | | | |

= sin2 2θ13 (cos2θ12 sin

2∆31 + sin2 θ12 sin

2∆32),

P13

Stephen Parke IFT - UAM 1/24/2019 # 17

zero

∆21 = 0.1

L/E1 km/MeV

minimum

<0.002

WHY ?

NO/IO

cos2 θ12 sin2∆31 + sin2 θ12 sin

2∆32 − sin2∆ee

= 0×∆21 sin 2∆ee + (s212c2

12)∆2

21 cos 2∆ee ±O(∆3

21)

∆31 = ∆ee + s2

12∆21

∆32 = ∆ee − c2

12∆21

Stephen Parke IFT - UAM 1/24/2019 # 18

Daya Bay Saga:

Invisibles 2015 —> present

DB 1505.03456v1 DB 1505.03456v2 (PRL)

=> SP 1601.07464

Stephen Parke IFT - UAM 1/24/2019 # 19

How Does Daya Bay Define ∆m2

EE?

sin2∆EE ≡ c2

12sin2∆31 + s

2

12sin2∆32 (1)

⇒ ∆m2

EE=

4E

L

arcsin

q

(c212sin2∆31 + s2

12sin2∆32)

EE

(arXiv:1310.6732 and 1505.03456v1)

Maladies:

• L/E dependent

• Discontinuous at Osc. Max./Min.

(L/E ≈ 0.5, 1.0, .. km/MeV)

3% jump

• no simple physical meaning !

Why???

RHS (1) never gets exactly to 1,

or back to 0

whereas LHS does !

eg sin2(π2 ) = 1

2 +O(4)

with = s12c12∆21

E

L

= M2

Stephen Parke IFT - UAM 1/24/2019 # 21

Daya Bay’s New Defn. ∆m2

EE?

(arXiv:1505.03456v2 and 1809.02261)

∆m2

EE ∆m2

32+

2E

L

arctan

sin 2∆21

cos 2∆21 + tan2 θ12

= ∆m2

ee(NPZ) L/E 2π/∆m2

21

∆m2

31L/E 2π/∆m2

21

• L/E dependent for > 10 km/MeV

• Jump in JUNO L/E ∼ 1%

• physical meaning ???

Maladies:

Stephen Parke IFT - UAM 1/24/2019 # 22

∆m221 = 7

Stephen Parke IFT - UAM 1/24/2019 # 23

KamLAND:

Stephen Parke IFT - UAM 1/24/2019 # 24

(km/MeV)eν

/E0L

20 30 40 50 60 70 80 90 100 110

Surv

ival

Pro

bab

ilit

y

0

0.2

0.4

0.6

0.8

1

eνData - BG - Geo best-fit oscillationν3-

best-fit oscillationν2-

KamLAND:

| | ≈

Vacuum:

averaged osc

∼ 68% ν1

∼ 30% ν2

∼ 2% ν3

∆m221 = 7.50+0.20

−0.20 × 10−5 eV2,

2

Stephen Parke IFT - UAM 1/24/2019 # 25

SuperK

ν? + e→ ν + e

Which type of Neutrino dominates this image ?

Stephen Parke IFT - UAM 1/24/2019 # 26

Neutrino Energy [MeV]

1−10 1 10

ee

, P

Survival probability for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solar Neutrinos:

MSW:

> 90% ν2

| | ≈ |

Vacuum:

averaged osc

∼ 68% ν1

∼ 30% ν2

∼ 2% ν3

pppp 7Be

Be pepep 8B

Borexino

8B SNO/SK

matter effect

Stephen Parke IFT - UAM 1/24/2019 # 27

Phys. Rev. D94, 052010 (2016)

SK/SNO

day night

∆m221 = 5.1+1.3

−1.0 × 10−5 eV2,

D/N asymmetry + lack of observation of upturn.

Eur.Phys.J. A52 (2016) no.4, 87

KamLAND

Stephen Parke IFT - UAM 1/24/2019 # 28

H

H

0.2 0.25 0.3 0.35 0.4

sin2q

12

0

2

4

6

8

10

12

14

Dm

2 21 [

10-

5 e

V2]

sin2q

13 = 0.0221

2

Tension between KamLAND and SNO/SK

Nu-fit

Stephen Parke IFT - UAM 1/24/2019 # 29

Why do we care about ∆m221 = 7

Stephen Parke IFT - UAM 1/24/2019 # 30

∼ →

P (νµ → νe)− P (νµ → νe) ≈ π J

∆m2

21

∆m2

31

where J = sin 2θ12 sin 2θ13 cos θ13 sin 2θ23 sin δ ≈ 0.3 sin δ

where J is Jarlskog Invariant (1986):

At oscillation maximum in vacuum:

CP Violation:

Stephen Parke IFT - UAM 1/24/2019 # 32

Neutrino mode 1Re candidates

30 40 50 60 70 80 90 100

An

tin

eutr

ino

mo

de

1R

e ca

nd

idat

es

4

6

8

10

12

14

16

18T2K Run1-9c Preliminary

0.55, 0.45, 0.50 = 23θ

2sin

4/c2 eV

-310× = 2.4432

2mΔ

4/c2 eV

-310× = 2.4113

2mΔ

π = CPδ

/2π = +CPδ

= 0CPδ

/2π = -CPδ

syst err

stat + syst err

Data

T2K

bi-event: bi-probability:

Stephen Parke IFT - UAM 1/24/2019 # 33

KamLAND∆m2

21 = 72 x KamLAND

∆m221 = 7

Stephen Parke IFT - UAM 1/24/2019 # 34

Can Short Baseline Reactor Neutrinos say anything about

∆m221 = 7

Stephen Parke IFT - UAM 1/24/2019 # 35

∆ij ≡∆m2

ijL

4E

( < 0.01 )

( < 0.1 )

L/E (km/MeV)

0.2 0.4 0.6 0.8 1.0

0.92

0.94

0.96

0.98

1.00P

P (νe → νe) = 1− P13 − P12 with

P13 = 4|Ue3|2(|Ue1|

2 sin2∆31 + |Ue2|2 sin2∆32)

= sin2 2θ13 (cos2θ12 sin

2∆31 + sin2 θ12 sin

2∆32),

P12 = 4|Ue2|2|Ue1|

2 sin2∆21 = sin2 2θ12 cos4θ13 sin

2∆21,

P12

Stephen Parke IFT - UAM 1/24/2019 # 36

Dependence on Solar Parameters:

0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00P

L/E (km/MeV)

P12

If ∆m221 is 3 times bigger, P12 is 9 times larger !

× KamLAND value

S.H. Seo and SP arXiv:1808.09150

dependence is on sin 2θ12∆m2

21

Stephen Parke IFT - UAM 1/24/2019 # 37

(km/MeV)νE/effL

0 0.2 0.4 0.6 0.8

)eν

→ eν(

P

0.9

0.95

1

Far Data

Near Data

Prediction from near data

RENO

2 4 6 8 10 12

[MeV]promptE2 4 6 8 10 12F

ar/

Near(

Weig

hte

d)

0.9

0.95

1

Daya Bay

1 - 10 KamLAND

∆m221 = 7

Stephen Parke IFT - UAM 1/24/2019 # 38

Simulation S.H. Seo and SP arXiv:1808.09150

L/E ∼ 0.5 km/MeV compared to KamLAND L/E ∼ 50 km/MeV

T2K is at 0.5 km/MeV

Stephen Parke IFT - UAM 1/24/2019 # 39

14θ22sin

-310 -210 -110 1

]2

| [e

V4

12

m∆|

-410

-310

-210

-110

Daya Bay 95% C.L.

sDaya Bay 95% CL

)σ1±Daya Bay 95% expected (

Bugey 90% C.L.

1607.01174404 days

Daya BaySterile Neutrino Search | e3| | e4| | e3| 31

1 sin2 2θ14 sin2∆41 sin2 2θ13 sin

2∆31.

× KamLAND value

Reinterpretation !

Stephen Parke IFT - UAM 1/24/2019 # 40

JUNO

Stephen Parke IFT - UAM 1/24/2019 # 41

5

17,000 20-inch PMTs

25,000 3-inch PMTs

In fact, JUNO will

be the largest

liquid scintillator

(LS) detector so

far in history!

LS Detectors Daya Bay Borexino KamLAND JUNO

Target Mass 20 t x 8 300 t 1 kt 20 kt

Similar in concept

to previous LS

experiments, but

much LARGER

JUNO

Stephen Parke IFT - UAM 1/24/2019 # 42

Nominal + B2B (1%) + BG + EL (1%) + NL (1%)

sin2 θ12 0.54% 0.60% 0.62% 0.64% 0.67%

∆m221 0.24% 0.27% 0.29% 0.44% 0.59%

|∆m2ee| 0.27% 0.31% 0.31% 0.35% 0.44%

Table 3-2: Precision of sin2 θ12, ∆m221

and |∆m2ee| from the nominal setup to those including

additional systematic uncertainties. The systematics are added one by one from left to right.

0.5%

JUNO precision ~2025

of sin2 θ12, ∆m221

and |∆m2ee|

Stephen Parke IFT - UAM 1/24/2019 # 43

Li, Wang, Xing 1605.00900

Matter Effects in JUNO

Matter Input/Matter Fit Matter Input/Vacuum Fit

Shift 1σ in ∆m2

21and 3σ in θ12

Size of shift unexplained in 1605.00900:

Khan, Nunokawa, SP upcoming 1810.?? or 1811.??

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

L/E (km/MeV)

13 − P12) = 1

Stephen Parke IFT - UAM 1/24/2019 # 44

5 10 15 20 25

0.92

0.94

0.96

0.98

1.00

) = 1− P13

L/E (km/MeV)5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

L/E (km/MeV)

13 − P12) = 1

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

L/E (km/MeV)

)=

1−P13−P12

JUNO

perfect resolution, not 3%/p

E/1 MeV

NOIO

NOIO

Stephen Parke IFT - UAM 1/24/2019 # 45

JUNO and the Mass Ordering:

Stephen Parke IFT - UAM 1/24/2019 # 46

3%

3%

Stephen Parke IFT - UAM 1/24/2019 # 47

2%

3%

Stephen Parke IFT - UAM 1/24/2019 # 48

Px(νe → νe) = 1− cos4 θ13 sin2 2θ12 sin

2∆21

1

2sin2 2θ13

1−p

1− sin2 2θ12 sin2∆21 cosΩ

with Ω = (∆31 +∆32) + arctan(cos 2θ12 tan∆21).

φ(∆21 ± π) = φ(∆21)± 2π sin2 θ12,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

∆m2

ee≡

∂ Ω

∂(L/2E)

L

E→0

= cos2 θ12∆m2

31+ sin2 θ12∆m2

32

where Ω = 2|∆ee| ± φ

| | ±

φ = arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

1875

φ

2∆21

NO phase advanceIO phase retardation

Stephen Parke IFT - UAM 1/24/2019 # 49

δ (∆m2

ee) ∼ 0.5%

Parke @ NOW 2008

Ω = 2|∆ee|+ η φ

NO => oO

IO => oO

| |

(NO, oO, IO) given by η=(1, 0, -1)

Neutrino Energy Reconstruction

Nominal Model ± 68% C.L.

Rec.

/ T

rue E

nerg

y

0.95

1

1.05

0.9

Positron Energy Response ModelReconstructed Energy [MeV]

True Positron Energy [MeV]0 1 2 3 4 5 6 7 8 109

(c)

9

Re

co

nstr

ucte

d E

ne

rgy /

Tru

e E

ne

rgy

Cross-validation

Energy Model + 68.3% C.L.

IBD Positron Energy

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

0 2 4 6 8 10

Daya Bay

RENO

Stephen Parke IFT - UAM 1/24/2019 # 50

•Energy Resolution to 3% or lower at 1 MeV

•Linearity to sub 1% precision for the

reconstructed neutrino energy

KamLAND# JUNO# RENOB50#

LS##mass# ~1#kt## 20#kt## 18#kt##

Energy#ResoluPon# 6%/# ~3%/# ~3%/#

Light#yield# 250#p.e./MeV# 1200#p.e./MeV# >1000#p.e./MeV#44(

20 x

4 x

Linearity 1.9% < 0.5% < 0.5% > 4 x

3% 0.3%

RESOLUTION LINEARITY

Stephen Parke IFT - UAM 1/24/2019 # 51

Other Prospects:

Stephen Parke IFT - UAM 1/24/2019 # 52

0.001 - 0.01

NEOSPROSPECT

DANSSSTEREO

Nu-4……

Ultra-Short Baseline: 10 m baseline

Stephen Parke IFT - UAM 1/24/2019 # 53

Matter Effects:

Stephen Parke IFT - UAM 1/24/2019 # 54

, i ddx = H,

H =1

2E

8

>

<

>

:

U

2

6

4

0 0 0

0 ∆m2

210

0 0 ∆m2

31

3

7

5U † +

2

6

4

a(x) 0 0

0 0 0

0 0 0

3

7

5

9

>

=

>

;

ee

a = 2√2GFNeE ≈ 1.52× 10−4

Ye

g.cm−3

E

GeV

eV2.

ν ≡

νe

νµ

ντ

if ρYe = 1.5 g/cm3 and E = 10 GeV then a ≈ ∆m231

E = 300 MeV then a ≈ ∆m2

21

Neutrino Propagation in Matter:

Stephen Parke IFT - UAM 1/24/2019 # 55

ax3 + bx

2 + cx + d = 0

complicated, counter intuitive, …

3 flavor mixing in matter

ax2 + bx + c = 0

simple, intuitive, useful

2 flavor mixing in matter

Stephen Parke IFT - UAM 1/24/2019 # 56

where H0 is diagonal

and H1 is off-diagonal.

Hamiltonian:

Rewrite as H = H0 + H1

H =1

2E

U

0 0 0

0 ∆m2

210

0 0 ∆m2

31

U†+

a 0 0

0 0 0

0 0 0

H. Minakata + SP arXiv:1505.01826P. Denton + H. Minakata + SP arXiv:1604.08167

solvable perturbation

Stephen Parke IFT - UAM 1/24/2019 # 57

0.15

0.015

0.002

Neutrino Evolution in Matter (conti):

D=diagonal OD= off-diagonal

(2E)HOD/∆m2ee = s13c13

2

4

1

0

1

3

5

+ c13 s12c12

∆m221

∆m2ee

!

2

4

1

1 0

0

3

5

− s13 s12c12

∆m221

∆m2ee

!

2

4

0

0 1

1

3

5

U†23(θ23, δ)H U23(θ23, δ) = HD +HOD

(2E)HD =

a+ s2

13∆m

2

ee

(c212

− s2

12)∆m

2

21

c2

13∆m

2

ee

∆m2

ee≡ cos2 θ12∆m

2

31+ sin2 θ12∆m

2

32

6=1

32

a

!!! level crossing !!!

Stephen Parke IFT - UAM 1/24/2019 # 58

f f e e

cos 2eθ13 = ∆m2ee cos 2θ13a

∆fm2

ee

where a = 2√2GFNeEν and

∆fm2ee = ∆m2

ee

q(cos 2θ13 − a/∆m2

ee)2 + sin2 2θ13

with ∆m2

ee cos

2 θ12∆m2

31+ sin

2 θ12∆m2

32

f

cos 2eθ12 = ∆m221 cos 2θ12a

0

∆fm2

21

where a 0 ≡ (a+∆m2ee

−∆fm2ee)/2

(the effective matter potential for 1-2 sector.)

∆fm221 = ∆m2

21

q(cos 2θ12 − a 0/∆m2

21)2 + cos2(eθ13 − θ13) sin

2 2θ12fq

− e −

∆fm231 = ∆m2

31+1

4a+ 3

4(∆fm2

ee−∆m2ee) + 1

2(∆fm2

21−∆m221)

DMP 0th order in a nutshell:

Vacuum ⇒ Matter

Pνα!νβ(∆m2

31,∆m221, θ13, θ12, θ23, δ) ⇒ Pνα!νβ

(∆ fm231,∆ fm2

21, eθ13, eθ12, θ23, δ)

(same function just use matter variables)

two 2 flavor

rotatio

ns

Stephen Parke IFT - UAM 1/24/2019 # 59

∆cm2ee

c c c− −

≈ ∆m2

ee

q(cos 2θ13 − a/∆m2

ee)2 + sin2 2θ13 ,

c

∆c m

2ee

∆m

2 ee

!2

(1−Pa(

e→

e))

π

|b∆ee|0 π/2 π 3π/2 2π

0.00

0.02

0.04

0.06

0.08

0.10

0.12c

−E [GeV]

−20

−2

0

2

20

Pa(νe → νe) ≈ 1− sin2 2θ13

∆m2

ee

∆cm2ee

!2

sin2 b∆ee ,

c

where b∆ee ≡ ∆cm2eeL/(4E) ,

Denton, SP 1808.09453

νe → νe

Stephen Parke IFT - UAM 1/24/2019 # 60

New Perturbation Theory for Osc. Probabilities

0.0

0.1

0.2

P

νµ → νe, L = 1300 (km), δ = 3π/2, NO

0.3 1.0 10E (GeV)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|∆P|/P

Zeroth First Second

systematic expansion

0.0

0.1

0.2

P

νµ → νe, L = 1300 (km), δ = 3π/2, NO

0.3 1.0 10E (GeV)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

|∆P|/P

Zeroth First Second

Stephen Parke IFT - UAM 1/24/2019 # 61

Summary:• Observation of Solar Neutrinos and Reactor Neutrinos have

taught us a great deal the electron row of the PMNS matrix, about U_ei and Delta m^2 ’s.

• the concept of an effective Delta m^2, Delta m^2_ee, is useful for the shape analysis of reactor neutrinos.

• Short baseline reactor experiments can constrain (maybe measure) Delta m^2_21 at twice the KamLAND value.

• the generalization of Delta m^2_ee into matter, is useful for understanding neutrino oscillations in matter for DUNE and T2HK(K)

∆m2

eeis νe average of ∆m

2

31and ∆m

2

32

∆m2ee

q

(cos 2θ13 − a/∆m2ee)2 + sin2 2θ13

Stephen Parke IFT - UAM 1/24/2019 # 62

Ernest Rutherford, emperor of the atomic

domain (Image: Wikipedia Commons)

Ernest Rutherford, master ofsimplicityBy Ashutosh Jogalekar | August 30, 2013 | 6for high-flying theorizing; he once said that

"theorists play games with their symbols while

we discover truths about the universe". And yet

he had an eye for theoretical talent that allowed

he had an eye for theoretical talent that allowed

him to nurture Niels Bohr, as dyed-in-the-wool a

theoretician and philosopher as you could find.

When asked why he adored Bohr in spite of his

Stephen Parke IFT - UAM 1/24/2019 # 63

extras

Stephen Parke IFT - UAM 1/24/2019 # 64

21,eθ13,

eθ12 ∆ fm231,∆

fm221,

Mixings and Masses in Matter:

12, θ23, δ) unchanged

NO: for IO figures see 1604.08167

es12 ≡ sin eθ12, etc

(2E)HOD/∆m2ee = sin(eθ13 − θ13) s12c12

∆m2

21

∆m2ee

!24

−es12ec12

−es12 ec12

35

≈ ×

4× 10−4

for E = 2 GeV and ρ = 3 g.cm−3sin(eθ13 − θ13) ≈ s13c13

a

∆m2ee

After 2 rotations:

0th Order:

zero in vacuum

Stephen Parke IFT - UAM 1/24/2019 # 65

νj and νi. Since ∆m221

∆m231

∆m232

[1], the short-

distance (km) reactor νe oscillation is due primarily to the

∆3i terms and naturally leads to the definition of the effec-

tive mass-squared difference sin2 ∆ee cos2 θ12 sin2∆31 +

sin2 θ12 sin2∆32 [11].

The Daya Bay experiment previously determined 2

(arXiv:1310.6732

d 1505.03456v1)071101 (2014).

[8] sin2∆ee ≡ cos2 θ12 sin

2∆31 + sin2

θ12 sin2∆32, where

∆ji ≡ 1.267∆m2

ji(eV2)[L(m)/E(MeV)], and ∆m2

ji is the

difference between the mass-squares of the mass eigenstates νjand νi.

How Does Daya Bay Define ∆m2

EE?