Spinor Bose gases lecture...

Post on 22-Mar-2021

2 views 0 download

Transcript of Spinor Bose gases lecture...

Spinor Bose gases lecture outline

1. Basic properties

2. Magnetic order of spinor Bose-Einstein condensates

3. Imaging spin textures

4. Spin-mixing dynamics

5. Magnetic excitations

We’re here

Citizens, did you want a revolution without revolution?

M. de Robespierre

Spin mixing instability

Perturb stationary state

Ψ 010

1/ 211/ 2

/ 21/ 2

Ψ

spin fluctuations

Bogoliubov linear stability analysis

2,

,

Map onto harmonic oscillator per mode 2

2

2 ,

,

Spin mixing instability

2 ,

,

ferromagnetc antiferromagnetic

Stable (H.O. like) 2 0

Stable (H.O. rotating in opposite sense) 0 2

Unstable middle range middle range

Hannover experiments: single-mode quench

m = 0m = ‐1 m = +1

stable

Instability to nearly uniform mode

(more likely to contain technical noise)

Instability to non‐uniform mode

(less likely to contain technical noise)

Hannover experiments: single-mode quench

PRL 103, 195302 (2009) PRL 104, 195303 (2010)PRL 105, 135302 (2010)

Noiseless spin amplification by a quantum amplifier

Dynamics of a single spatial mode are like those of a one-dimensional harmonic oscillator

parametric amplifier(invert the potential)

ground state(vacuum fluctuations)

For quenched F=1 spinor gas:two phase-space planesquadrature operators are spin-vector and spin-quadrupole moments

“Spin squeezing of high-spin, spatially extended quantum fields,” NJP 12, 085011 (2010)

Quantum spin-nematicity squeezing(Chapman group, Georgia Tech)

observed squeezing 8.6 dB below standard quantum limit!Hamley et al., Nature Physics 8, 305 (2012).see also Gross et al., Nature 480, 219 (2011) [Oberthaler group], andLücke, et al., Science 334, 773 (2011) [Klempt group]

15 ms 30 ms

45 ms 65ms

3

2

1

0

-1

E2

2.01.51.00.50.0k

q = -0.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = -0.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 2.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 2.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 2.03

2

1

0

-1

E2

2.01.51.00.50.0k

q = 2.03

2

1

0

-1

E2

2.01.51.00.50.0k

q = 1.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 1.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 13

2

1

0

-1

E2

2.01.51.00.50.0k

q = 13

2

1

0

-1

E2

2.01.51.00.50.0k

q = 0.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 0.53

2

1

0

-1

E2

2.01.51.00.50.0k

q = 03

2

1

0

-1

E2

2.01.51.00.50.0k

q = 0

Spectrum of stable and unstable modesBogoliubov spectrum

Gapless phonon (m=0 phase/density excitation)Spin excitations

0zm 2 2 2( )( 2)SE k q k q

Energies scaled by c2n

q>2: spin excitations are gapped by ( 2)q q 1>q>2: broad, “white” instability0>q>1: broad, “colored” instabilityq<0: sharp instability at specific q≠0

Quantum quench

unmagnetized stateferromagnetic states

BEC

Non-equilibrium (quantum) dynamics at a (quantum) phase transition

2 22 zE c n F q F

0 22q c n q0

transverse planelongitudinal axis

(2) (1)SO U2 (1)Z U (1)U

“Majoranarepresentation,”Majorana, NuovoCimento 9, 43

(1932)

Thold = 30 60 90 120 150 180 210 ms

TA n F

/ MAXA A

Spontaneously formed ferromagnetism

• inhomogeneously broken symmetry• ferromagnetic domains, large and small• unmagnetized domain walls marking rapid reorientation

350

300

250

200

150

100

50

q / h =

T = 170 ms

Tuning the amplifier

Quench endpoint:

400 m

40 m

Hz10520-2

5. Magnetic excitations

a. magnons in feromagnetic superfluid

i. recoil energy

ii. energy gap

b. magnon evaporative cooling and thermometry

c. (magnon condensation)

uniform rotation costs no energy

Collective excitations of a ferromagnetic superfluid

e.g. ferromagnet:

Symmetries of the order parameter space tell us something about excitations

nearly uniform rotation costs nearly no energy

→ Gapless modes (Nambu-Goldstone) associated with each broken symmetry

Generators of broken symmetries

Collective excitations of a ferromagnetic superfluid

→ Gapless modes associated with each broken symmetry

Necessary mode

change of the condensate phase phonon (linear disp.; “massless”)

magnon (quadratic disp.; “massive”)rotation of magnetization about y

rotation of magnetization about x

non‐zero expectation value of commutator gives one less mode + turns it quadratic,Watanabe and Murayama, PRL 108, 251602 (2012)

Collective excitations of a ferromagnetic superfluid

Is the magnetic excitation of a spinor Bose-Einstein condensate gapless?Is it quadratically dispersing?

1 0.6 1.003

Phuc and Ueda, Annals of Physics 328, 158 (2013)(Beliaev theory)

For atomic superfluid with weak, local interactions, expect:

magnon mass = atomic mass

Magnon interferometry

AM

,

,

atoms

light

position,

spin rotation 

87Rb, F=1, optically trapped, spinor Bose-Einstein condensate, prepared in longitudinally polarized ( 1), ferromagnetic stateCircular polarized light at correct wavelength produces fictitious magnetic field [see Cohen-Tannoudji, Dupont-Roc, PRA 5, 968 (1972)]Rabi-pulse produces wavepacket of magnons

Imaging the magnon distribution (ASSISI)

| 1⟩| 0⟩

| 1⟩

50 µm

| 1, 0⟩

| 0, 0⟩

| 0, ⟩ | 0, ⟩

Interference contrast evolves at the frequency difference

50 µm

Magnon contrast interferometry

Magnon contrast interferometry

related works:Gupta et al., PRL 89, 140401 (2002): contrast interferometry in dilute scalar gas (interaction shift)Gedik et al., Science 300, 1410 (2003): grating interferometry of quasiparticles in cuprate SC

Freely expanding magnon pulse

magnon expansion time (ms)

0 20 40 60 100 120 140 160 180 200 220

rms width < 8 µm

Magnons in dense ferromagnetic superfluid ≃ free particles in potential free space

AM

atoms

light position

,

spin rotation 

Dispersion of magnons in ferromagnetic superfluid

free (black): 1Beliaev: 1.003measured (red): 1.038(2)(8)

magnonmassatomicmassphonons (Bragg)

115 Hz @ 2⁄ 50

mean field shift (Bragg)46 Hz @  410

skip to gap

Is the magnon a gapless excitation?

Conditions of Nambu-Goldstone theorem:Short-ranged interactionsBroken continuous symmetry

1. Applied magnetic bias field

0

(perhaps gauged away in rotating frame?)

2. Anisotropic trap

geometry≈ surfboard

300 m

depth ~3 m

100 m

Magnetic dipolar interactions

Measurement of the magnon gap energy

applied B field

≈ infinite 2D slab at local density

Dipolar field isn’t proportional to

Dipolar Larmor frequency shift

detect on top of constant B-field inhomogeneity by spatially resolved, spin-sensitive imaging

Only dipolar shift varies with tipping angle

theoretical suggestion: Kawaguchi, Saito, Ueda, PRL 98, 110406 (2007)

tipping angle 

one comp. of trans. spin X

Y

Larmor phase:

Measurement of the magnon gap energy

random from shot to shot due to field fluctuations

from static B‐field inhomogeneity (gradient and curvature)

magnon gap: isolate from dependence on tipping angle

Magnon gap map

“Coherent magnon optics in a ferromagnetic spinor Bose‐Einstein condensate,” arXiv: 1404.5631 

Magnon evaporative cooling of a ferromagnet

1) start with fully magnetized degenerate Bose gas

| 1⟩ | 1⟩(ignore for clarity)

superfluidzero energyzero entropy

normal∼ 3∼

| 0⟩

Magnon evaporative cooling of a ferromagnet

1) start with fully magnetized degenerate Bose gas2) tip magnetization by small angle

| 1⟩ | 0⟩ | 1⟩(ignore for clarity)

superfluid

normal

Magnon evaporative cooling of a ferromagnet

1) start with fully magnetized degenerate Bose gas2) tip magnetization by small angle3) thermalize at constant energy, magnetization

| 1⟩ | 0⟩ | 1⟩(ignore for clarity)

superfluid

normal number decreases, and so must 

temperature

magnoncondensate heats into normal component

majority condensate grows

energy and entropy flows into magnon gas

Lewandowski et al., “Decoherence‐driven cooling of a degenerate spinor Bose gas,” PRL 91, 240404 (2003)

Magnon evaporative cooling of a ferromagnet

1) start with fully magnetized degenerate Bose gas2) tip magnetization by small angle3) thermalize at constant energy, magnetization4) eject magnons

| 1⟩ | 0⟩ | 1⟩(ignore for clarity)

superfluid

temperature reduced,entropy per particle 

reduced

“evaporated” atoms carry ⁄ 3 ,

greater than average 

Magnon thermalization and thermometryCreate small fraction of magnons, apply weak field gradient, wait

in-situ magnon distribution

0 ms wait 40 ms wait

momentum space distribution (magnetic focusing)

Magnon thermometry of normal evaporative cooling

∼ 2nK⁄ ∼ 0.05⁄ ∼ 0.2

At trap center: 

≃ ≃ 10

Magnon evaporative cooling in deep trapOptical trap depth: 740 nK

Create fraction of magnons, apply weak field gradient, wait, eject, repeat

momentum space distribution of majority atoms

1 cycleT=54 nK

T/Tc = 0.52

9 cyclesT=38 nK

T/Tc = 0.45

momentum space distribution of magnons

Magnon evaporative cooling in deep trapOptical trap depth: 740 nK

Create fraction of magnons, apply weak field gradient, wait, eject, repeat

momentum space distribution of majority atoms

11 cyclesT=36 nK

T/Tc = 0.43

19 cyclesT=27 nK

T/Tc = 0.40

momentum space distribution of magnons

trap depth27

Magnon cooling results (at present)

Magnon cooling results (at present)

Ed Marti

AndrewMacRae Ryan OlfFang Fang

$$ Thanks! to NSF, DTRA, DARPA OLE

Other things to ask me about:a. quantum‐limited metrology: cavity optomechanics and 

photon mediated interactionsb. triangular/kagome lattice experiments (see Claire Thomas)c. rotation sensing with a ring‐shaped Bose‐Einstein condensated. looking for excellent postdocs and students

ClaireThomas