Sequential Circuit Design: Part...

of 34 /34
James Morizio 1 Sequential Circuit Design: Part 1 Design of memory elements Static latches Pseudo-static latches Dynamic latches Timing parameters Two-phase clocking Clocked inverters

Embed Size (px)

Transcript of Sequential Circuit Design: Part...

  • James Morizio 1

    Sequential Circuit Design: Part 1

    • Design of memory elements– Static latches– Pseudo-static latches– Dynamic latches

    • Timing parameters• Two-phase clocking• Clocked inverters

  • James Morizio 2

    Sequential Logic

    2 s torage mechanis ms• pos itive feedback• charge-bas ed

    Φ

    LOGIC

    tp,combInOut

    FFs

  • James Morizio 3

    Sequencing• Combinational logic

    – output depends on current inputs

    • Sequential logic– output depends on current and previous inputs– Requires separating previous, current, future– Called state or tokens– Ex: FSM, pipeline

    CL

    clk

    in out

    clk clk clk

    CL CL

    PipelineFinite State Machine

  • James Morizio 4

    Sequencing Cont.

    • If tokens moved through pipeline at constant speed, no sequencing elements would be necessary

    • Ex: fiber-optic cable– Light pulses (tokens) are sent down cable– Next pulse sent before first reaches end of cable– No need for hardware to separate pulses– But dispersion sets min time between pulses

    • This is called wave pipelining in circuits• In most circuits, dispersion is high

    – Delay fast tokens so they don’t catch slow ones.

  • James Morizio 5

    Sequencing Overhead

    • Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.

    • Inevitably adds some delay to the slow tokens• Makes circuit slower than just the logic delay

    – Called sequencing overhead

    • Some people call this clocking overhead– But it applies to asynchronous circuits too– Inevitable side effect of maintaining sequence

  • James Morizio 6

    Sequencing Elements• Latch: Level sensitive

    – a.k.a. transparent latch, D latch

    • Flip-flop: edge triggered– A.k.a. master-slave flip-flop, D flip-flop, D register

    • Timing Diagrams– Transparent– Opaque– Edge-trigger

    D

    Flop

    Latc

    h

    Q

    clk clk

    D Q

    clk

    D

    Q (latch)

    Q (flop)

  • James Morizio 7

    Flip-Flop: Timing Definitions

    DATASTABLE

    In

    t

    tsetup thold

    DATASTABLE

    Out

    t

    tpFF

    t

    Φ

  • James Morizio 8

    Maximum Clock Frequency

    LOGIC

    tp,comb

    FFs

    Φ

  • James Morizio 9

    Latch Design• Pass Transistor Latch• Pros

    + Tiny+ Low clock load

    • Cons– Vt drop– nonrestoring– backdriving– output noise sensitivity– dynamic– diffusion input

    D Q

    φ

    Used in 1970’s

  • James Morizio 10

    Latch Design

    • Transmission gate+ No Vt drop- Requires inverted clock

    D Q

    φ

    φ

  • James Morizio 11

    Latch Design

    • Inverting buffer+ Restoring+ No backdriving+ Fixes either

    • Output noise sensitivity• Or diffusion input

    – Inverted output

    D

    φ

    φ

    X Q

    D Q

    φ

    φ

  • James Morizio 12

    Latch Design

    • Buffered input+ Fixes diffusion input+ Noninverting

    φ

    φ

    QD X

    φ

    φ

  • James Morizio 13

    Latch Design

    • Buffered output+ No backdriving

    • Widely used in standard cells+ Very robust (most important)- Rather large- Rather slow (1.5 – 2 FO4 delays)- High clock loading

    φ

    φ

    Q

    D X

    φ

    φ

  • James Morizio 14

    Latch Design

    • Tristate feedback+ Static– Backdriving risk

    • Static latches are now essential

    φ

    φ φ

    φ

    QD X

  • James Morizio 15

    Latch Design

    • Datapath latch+ Smaller, faster- unbuffered input

    φ

    φ φ

    φ

    Q

    D X

  • James Morizio 16

    Design of Memory Elements

    Q

    C

    C

    C

    CD

    ΦΦ Φ Φ Q

    Positive edge-triggered D flip-flopWhy use inverters on outputs?

    Skew Problem : Φ may be delayed with respect to Φ (both may be 1 at the same time)

    This is what happens-

    Q

    QD

    C Φ

    ΦΦin1 Transmission gate acts a

    buffer, should have samedelay as inverter

    Eliminating/Reducing skew:

  • James Morizio 17

    Latch design

    Static D latch “Jamb” latch Weak inverter

    C

    ΦΦ

    C

    C

    D

    ΦΦ

    DQ Q

  • James Morizio 18

    Latch Design

    CD

    Φ

    C

    ΦQ

    Variant of D latch

    Φ

    ΦD

    Φ

    ΦQ

  • James Morizio 19

    Flip-Flop Design• Flip-flop is built as pair of back-to-back latches

    D Q

    φ

    φ

    φ

    φ

    X

    D

    φ

    φ

    φ

    φ

    X

    Q

    φ

    φ

    φ

  • James Morizio 20

    Enable• Enable: ignore clock when en = 0

    – Mux: increase latch D-Q delay– Clock Gating: increase en setup time, skew

    D Q

    Latc

    h

    D Q

    en

    en

    φ

    φ

    Latc

    hDQ

    φ

    0

    1

    en

    Latc

    h

    D Q

    φ en

    DQ

    φ

    0

    1

    enD Q

    φ en

    Flop

    Flop

    Flop

    Symbol Multiplexer Design Clock Gating Design

  • James Morizio 21

    Reset• Force output low when reset asserted• Synchronous vs. asynchronous

    D

    φ

    φ

    φ

    φ

    Q

    φ

    φ

    φ

    reset

    D

    φ

    φφ

    φ

    φ

    φ

    φ

    Dreset

    φ

    φ

    φ

    Dreset

    reset

    φ

    φ

    reset

    Synchronous R

    esetA

    synchronous Reset

    Sym

    bol Flo

    p

    D Q

    Latc

    h

    D Q

    reset reset

    φ φ

    φ

    φ

    Q

    reset

  • James Morizio 22

    Set / Reset

    • Set forces output high when enabled• Flip-flop with asynchronous set and reset

    D

    φ

    φ

    φ

    φφ

    φ

    Q

    φ

    φ

    reset

    set reset

    set

  • James Morizio 23

    Dynamic Latches

    • So far, all latches have been static-store state when clock is stopped but power is maintained

    • Dynamic latches reduce transistor count• Eliminate feedback inverter and transmission gate• Latch value stored on the capacitance of the input

    (gate capacitance)

  • James Morizio 24

    Dynamic Latch and Flip-Flop

    • Difficult to ensure reliable operation• Similar to DRAM• Refresh cycles are required

    CD

    Φ

    QC

    Data stored asCharge on gate capacitance

    Dynamic D latch

    Φ

    CD

    Φ

    QDynamic negativeedge-triggered D flip-flop

    C

  • James Morizio 25

    Charge-Based Storage

    Schematic diagram

    Non-overlapping clocks

    P s e udo -s ta tic Latc h

    QD

    Φ

  • James Morizio 26

    Master-Slave Flip-Flop

    AB

    Overlapping Clocks Can Caus e• Race Conditions• Undefined Signals

    Φ Φ

    Φ ΦD

    Q

    To reduce skew: generatecomplement of clock within the cellExtra inverter per cell

  • James Morizio 27

    Two-Phase Clocking

    • Inverting a single clock can lead to skew problems• Employ two non-overlapping clocks for master and slave

    sections of a flip-flop• Also, use two phases for alternating pipeline stages

  • James Morizio 28

    Two-Phase Clocking

    Φ1(t) . Φ2(t) = 02

    Φ1=1, Φ2 = 0

    Φ

    Φ

    1

    2 Φ

    CD

    Φ

    QC

    1

    D Q

    Φ1=0, Φ2 = 1D Q

  • James Morizio 29

    2-phase non-overlapping clocks

    1

    2

    t

    Φ

    ΦImportant:Non-overlap time t must bekept small

    2

    1

    1

    Φ

    Φ

    Φ

    Q

    D

    Pseudo-staticD flip-flop

  • James Morizio 30

    2-phase dynamic flip-flop

    φ2φ1

    Input Sampled

    Output Enable

    φ1

    φ2

    D Q

  • James Morizio 31

    Use of “p” LeakersΦ Φ

    Q

    Degraded voltage VDD-Vt

    Flip-flopbased on nMOSpass gates

    1 2

    D

    Φ Φ

    Q

    1 2

    D

    No need to routeΦ signals

    pMOS leaker transistorsprovide full-restored logiclevelsProblem: Increased delay

    (extra inverter)

  • James Morizio 32

    Clocked Inverters

    Q

    Φ

    Similar to tristate buffer Φ = 1, acts as inverterΦ = 0, output = Z

    Φ

    Φ

    D

    Φ Φ

    i1 i2 i3Q

    D

    D Latch

  • James Morizio 33

    Flip-flop insensitive to clock overlap

    DIn

    φ

    φ φ

    φ

    VDDVDD

    M1

    M3

    M4

    M2 M6

    M8

    M7

    M5

    φ−section φ−section

    CL1 CL2

    X

    C2MOS flip-flop

  • James Morizio 34

    C2MOS avoids Race Conditions

    DIn

    1

    M1

    M3

    M2 M6

    M7

    M5

    1

    DIn

    VDDVDD

    M1

    M4

    M2 M6

    M8

    M5

    0 0

    VDDVDD

    (a) (1-1) overlap (b) (0-0) overlap

    X X