SNDR Improvement Algorithms in Binary and Ternary ΔΣDAC · SNDR Fourth-order CT DSM with...

Post on 25-Sep-2020

2 views 0 download

Transcript of SNDR Improvement Algorithms in Binary and Ternary ΔΣDAC · SNDR Fourth-order CT DSM with...

SNDR Improvement Algorithms in Binary and Ternary ΔΣDACJun-ya Kojima, Nene Kushita, Masahiro Murakami, Anna Kuwana, Haruo Kobayashi

1.Objective

Modulatoroutput

Analog outputDigital input

Digital ΔΣ modulator

Quantizer

Limit cycle problem for small input

Removal of analog signal by LPF sharply

Goal ・Limit cycle reduction

・Relax LPF requirement

Analog output = Signal + Limit cycle

Signal

⇒ Difficult

Measurement & audio applications

Limit cycle

Limit cycle reduction using digital dither

Development of high-Resolution,

high-Linearity ΔΣ DAC

Approach

2.Background

t181d024@gunma-u.ac.jpDivision of Electronics and Informatics, Gunma University

1.ObjectiveDemand for better digital-to-analog converter (DAC)

Problem

Manufacturing variations

among DAC circuit elements

Purpose of this work

DSP algorithms

to suppress the variation effects

for binary and ternary DACs

High resolutionConventional

2.Background

ΔΣ digital modulator

Quantizer

Feedback

Integrator+

−Analog

LPF∑ Multi-bit

DAC

Analog outputDigital input

Digital Analog

Signal

Δ:Difference

Σ:Integral

Noise

transfer

Power spectrum

ΔΣ Digital to Analog Converter (Low Pass)

Measurement & audio applications

< Using >

ΔΣ Digital-to-Analog Converter (ΔΣDAC) →Required

Mostly digital circuit

High-resolution ,High-linearity

DC signal , low frequency signal generation

Purpose

Improve linearity (High resolution)

3. Introduction to Ternary

+8

0 0

+8

-8

Ternary⇒ +, - and 0 valueBinary⇒ + and 0 value

Forces

0 +1 +10-1

Binary unit cell 1-bit Ternary unit cell 1.5-bit

TernaryBinary

9 Level17 Level

8 current sources

Higher resolution for given current sources

Smaller number of current sources for given resolution

Reasons for Ternary Usage

4. DWA*Algorithm (* Data-Weighted Averaging)

Positive Voltage

negative Voltage

Conventional DWA type I DWA type II

Unit cell mismatch

⇒ Accumulation

𝑒𝑖Improve linearity

⇒ Averaging

Distribute unit cell mismatch

( Back and forth )

6.Pointer1 Pointer 2 Pointers 4 Pointers

5. Binary, Ternary DWA Overview

Signal Band ValueNumber (N) of

Signal BandsDWA type

LP Binary 1 I

Ternary 1 I

HP Binary 1 II

Ternary 1 I

BP Binary 2 II

Binary 4 II

Ternary 2 I

Ternary 4 I

New Findings

Reference[1] R. Schreier, G.C Temes, Understanding Delta-Sigma Data Converters, Wiley-IEEE press (2009).[2] Y. Geerts, M.

Steyaert, W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Kulwer Academic Publisher (2002).

[3] M. Murakami, H. Kobayashi, et. al., "I-Q Signal Generation Techniques for Communication IC Testing and ATE

Systems", IEEE International Test Conference (Nov. 2016).

[4] A. Motozawa, H. Hagiwara, Y. Yamada, H. Kobayashi, et. al., "Multi-BP ΔΣ Modulation Techniques and Their

Applications", IEICE Tran, vol. J90-C, no.2, pp.143-158 (Feb. 2007). [5] I. Jang, et. al., "A 4.2mW 10MHz BW 74.4dB

SNDR Fourth-order CT DSM with Second-order Digital Noise Coupling Utilizing an 8b SAR ADC", VLSI Circuits Symp

(June 2017).

7.Conclusion

In case HP, BP ΔΣ DACs with ternary unit cells, DWA

type I with pointers alternately used is effective.

< ΔΣ DA modulator >

Segmented DAC with ternary unit cells

● High-pass (HP) ΔΣ DAC (N=1)

σ = 0.1%

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

SND

R (

dB

)

OSR (2n)

● Band-pass (BP) ΔΣ DAC (N=2)

σ = 0.1%

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

SND

R (

dB

)

OSR (2n)

σ = 0.1%

● Band-pass (BP) ΔΣ DAC (N=4)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

SND

R (

dB

)

OSR (2n)

It is high linearity when DWA type l is used.

< DWA type I >

< DWA type II >

< DWA type II >

Noise shape